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Abstract

We consider a setting that was first introduced by Füredi in [6]
and by Bienstock and Győri in [1] and that was further investigated
in [7], [20], and [9]. For 0–1 matrices P and An, we are interested
in the maximum number of 1 entries contained in a matrix An that
avoids P and denote this number by ex(n, P ).

First, we introduce ex(n, P ) together with results from previous
papers and compare ex(n, P ) with Turán type problems in extremal
graph theory. Secondly, we look at the concept of minimally non-linear
patterns as mentioned in [14] and investigate a pattern that comes up
in the context of this concept. In the end, we consider a class of
patterns and conjecture an upper bound on ex(n, P ) for patterns in
this class.

1 Introduction

Let us start with the definition of a submatrix:

Definition 1.1. A and B are 0–1 matrices of arbitrary dimension. B is a
submatrix of A if and only if B can be obtained from A by deleting rows and
columns but not permuting rows or columns

Based on the definition of a submatrix, Füredi and Hajnal present two
relations on matrices:
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Definition 1.2. A, B, and P are 0–1 matrices of arbitrary dimension:

1. A contains P if and only if there is a submatrix B of A so that ∀i, j :
Pi,j = 1 ⇒ Bi,j = 1.

2. A avoids P if and only if A does not contain P .

Let us first have a look at an example for this definition. We consider the
pattern L1

1

L1 =

 •
• •

•


and the square matrix A5

A5 =


• •

• • •
• • •

• • •
• • •


A5 contains P because we can find a submatrix B that clearly contains the
pattern P .

A5 =


◦ •

• ◦ •
◦ ◦ ◦

• • •
◦ ◦ ◦

 B =

 •
• •
• • •



The matrix A′
5 avoids the pattern P because we cannot find such a sub-

matrix. It is easy to give a certificate for the fact that A5 contains P ; it is
not possible to give such a short certificate for the fact that A′

5 avoids P .
Instead, one possibly has to test all submatrices of A′

5.

A′
5 =


• •

• •
• •

• •
• •


1To present 0–1 matrices, we use bullets for 1 entries and leave blanks for 0 entries.

2



1.1 Different Point of View

Let us interpret 0–1 matrices as adjacency matrices of a bipartite graphs:

Definition 1.3. Am,n is a 0–1 matrix of dimension m × n. Let G(Am,n) =
(V, E) be a bipartite graph with V = {ri | 1 ≤ i ≤ m} ∪ {ci | 1 ≤ i ≤ n} and
E = {{ri, cj} | Ai,j = 1}.

Based on the bipartite graph G(Am,n), we define a bipartite graph
−→
G(Am,n):

Definition 1.4. Let
−→
G(Am,n) be the graph G(Am,n) together with the order-

ing relations r1 < r2 < ... < rm and c1 < c2 < ... < cn on V .

We introduce the graph
−→
G(Am,n) because it matches Definition 1.1 for

submatrices. The vertices ri ∈ V (
−→
G(Am,n)) represent the rows of Am,n and

the vertices ci ∈ V (
−→
G(Am,n)) the columns of Am,n. Definition 1.1 states that

to obtain a submatrix B from Am,n, one is not allowed to permute rows or
columns. This is equivalent to say that there is an ordering relation on the
rows and columns of Am,n. Notice that the definition of contains and avoids
use Definition 1.1 — we can conclude that contains and avoids operate on

the graph
−→
G(Am,n).

Let us show the bipartite graphs of the so far presented 0–1 matrices.

Notice that for a graph
−→
G(A), we hint at the ordering relation with an arrow

— other than that, the graph
−→
G(A) is exactly the same as G(A).

r1 r2 r3

c1 c2 c3

−→

−→
−→
G(L1) =

r1 r2 r3 r4 r5

c1 c2 c3 c4 c5

−→

−→
−→
G(A5) =

r1 r2 r3 r4 r5

c1 c2 c3 c4 c5

−→

−→
−→
G(A′

5) =
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1.2 Extremal Function

Let us first define the weight of a 0–1 matrix:

Definition 1.5. Assume that A is a 0–1 matrix. We define the weight w(A)
of A as the number of 1 entries that are contained in A.

We define now the function ex(n, P ) that is based on the presented con-
tains and avoids relations and that will be the basis for the investigations in
the rest of this paper:

Definition 1.6. P is a 0–1 pattern and An is an n×n 0–1 matrix. We define
ex(n, P ) to be the maximum weight of the matrix An avoiding the pattern P .

Let us state a few properties for ex(n, P ) that can be easily seen and that
will be used in the rest of the paper:

1. Trivial Lower Bound: It is possible that an n×n matrix An contains
zero 1 entries. The pattern Z attains this bound — it is easy to see
that as soon as An contains a 1 entry, the pattern Z is contained in An.

Z =
(
•

)
For all patterns that are not equivalent to Z, we have a trivial lower
bound that is linear. A pattern that is not equivalent to Z has to
contain at least two 1 entries. Assume first that the two 1 entries are
in different rows. A matrix An with 1 entries in only one row clearly
avoids the pattern. If all 1 entries of the pattern are in one row, then at
least two different columns of the pattern have to contain 1 entries. In
this case, we just fill one column of An with 1 entries. Combining the
two cases, we can conclude that a linear lower bound for all patterns
not equivalent to Z has been established.

2. Trivial Upper Bound: The extremal function ex(n, P ) is equivalent
to the weight of an n× n matrix An that avoids P . An has maximum
weight n2 and this is the trivial upper bound for ex(n, P ). It is impor-
tant to notice that there is no pattern that attains this trivial upper
bound.
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3. Reflected Patterns: For a pattern P of dimension m×n, let us define
the vertically reflected pattern P | as

∀i, j : P
|
i,j = Pi,n−j+1

and the horizontally reflected pattern P as

∀i, j : P i,j = Pm−i+1,j

There are two ways of reflecting a pattern P on the diagonal:

∀i, j : P
/
i,j = Pj,m−i+1

and
∀i, j : P

\
i,j = Pj,i

The last reflection presented here is the central reflection:

∀i, j : Ṗi,j = Pm−i+1,n−j+1

All patterns P ′ that can be obtained from P by one of the above re-
flections are called equivalent and all those patterns have the same
extremal function as P . This holds because the same transformation
that is applied to P can as well be applied to the matrix An that avoids
P with maximum weight. We get a transformed matrix An that avoids
the transformed P .

4. Containment: If a pattern P contains a pattern Q — that means

∀i, j : Qi,j = 1 ⇒ Pi,j = 1

— then we have for the extremal function

ex(n, Q) ≤ ex(n, P )

This holds because a matrix An avoiding Q avoids as well P .

5. Removing Empty Rows and Columns: If a pattern P can be
obtained from a pattern Q by removing empty rows and columns, we
have

ex(n, P ) ≤ ex(n, Q) = O(ex(n, P ) + n)

We do not give a proof here but refer to [9], Theorem 2.2.
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The extremal function ex(n, P ) has been investigated for some patterns.
Füredi and Hajnal started in [7] a systematic investigation of ex(n, P ) for
patterns with weight at most four and determined the asymptotical value of
the ex(n, P ) for most of them. Tardos finished this work in [20] by provid-
ing the missing bounds. Together with Marcus, Tardos investigated in [14]
ex(n, P ) of permutation matrices. Similar work has been done in [19] by
Brass, Károlyi, and Valtr.

In [7], Füredi and Hajnal introduced reductions between patterns. By
reducing a pattern P to a pattern Q, we get information about ex(n, P ) based
on information about ex(n,Q). This helps us to deduce information about
new patterns based on patterns for which we already have an asymptotical
value for ex(n,Q). Keszegh introduced in [9] additional reductions. We list
the most important reductions from the two mentioned papers in Appendix
A.

It is important to notice that reductions are a first step towards kind of
a theory. Together with a base set of patterns for which we know ex(n, P ),
reductions can be used to explore the space of patterns. Although we know
ex(n, P ) for all patterns with weight at most 4 (see Section 1.5) and therefore
have a base set, we are not able to explore the whole space of patterns.
One has to find more reductions and determine ex(n, P ) for whole classes of
patterns. For a start on this, have a look at Section 1.4.

1.3 Turán Type Problems

Let us refer to a well studied problem — Turán type problems in extremal
graph theory. For a graph G, one asks for the maximum number of edges that
a graph with n vertices can have at most under the condition that it does
not contain G as a subgraph. Let us denote this number by ex(n, G). Note
that the second parameter G is a graph opposed to Definition 1.6, where P
is a pattern.

Theorem 1.7. [4, 3] For a graph G, we have

ex(n, G) =

(
1− 1

χ(G)− 1

) (
n

2

)
+ o(n2)

with χ(G) the chromatic number of G.

This theorem is known as the Erdős-Stone-Simonovits Theorem and is
important because it determines the asymptotical value of ex(n,G) for all
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graphs that are not bipartite. It follows that the problem of determining the
asymptotical value of ex(n, G) is an open question only for bipartite graphs.
In Section 1.1, we have seen that all patterns P correspond to a bipartite
graph G.

It is important to notice that the Turán type problem is based on a graph
G that has no ordering relation imposed on its vertices. This is in fact the

difference to ex(n, P ) — which is based on a graph
−→
G with an ordering

relation.

1.3.1 Bipartite Graphs

The graphs we obtain from patterns have not only an ordering relation on the
vertices but they are as well bipartite. For a bipartite graph G without an
ordering relation on the vertices, the only information we get from Theorem
1.7 is ex(n,G) = o(n2). A lot of work has been done to obtain a better result
for ex(n, G) but still many problems remain unsolved. Let us mention one
result by Alon, Krivelevich, and Sudakov:

Theorem 1.8. [17] For a bipartite graph G with two partite vertex sets of

size m and n, ex(n,G) ≤ O(n2− 1
min(m,n) ) holds.

1.4 Permutation Matrix Patterns

Marcus and Tardos investigate in [14] permutation matrices P .

Definition 1.9. A permutation matrix P has dimension n × n, contains 0
and 1 entries, and has exactly one 1 entry per row and exactly one 1 entry
per column.

Marcus and Tardos show that for a pattern P that is a permutation
matrix, ex(n, P ) = Θ(n) holds. The key idea in their proof is to reduce the
problem ex(n, P ) to ex( n

k2 , P ) — for some constant k. Assume that An is the
matrix that avoids P with maximum weight. An is partitioned into blocks
of size k2 × k2 and every block is mapped to one entry — giving us a new
matrix A n

k2
. Marcus and Tardos show that if An avoids the pattern P , then

so does A n
k2

. This reduction gives the recursion

ex(n, P ) ≤ (k − 1)2ex
( n

k2
, P

)
+ 2k3

(
k2

k

)
n
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that has the solution

ex(n, P ) ≤ 2k4

(
k2

k

)
n = O(n)

for a constant k.
The proof as presented by Marcus and Tardos is very short and simple.

This is remarkable considering that ex(n, P ) for permutation matrices has
been unknown for years and that the problem was considered to be important
because both the Stanley–Wilf conjecture and the Alon–Friedgut conjecture
[16] are closely related. Notice as well that this proof not only determines
the extremal function for one pattern but rather for a class of patterns.

1.5 Patterns with at Most Four Entries

Füredi and Hajnal start the investigation of patterns with weight at most
four in [7] and Tardos finishes this investigation in [20]. We characterize the
patterns according to ex(n, P ) and notice that the patterns belong to one of
five categories.

For all P with w(P ) ≤ 4 :

ex(n, P ) =


0
Θ(n)
Θ(nα(n))
Θ(n log(n))

Θ(n
3
2 )

As we have noticed during the investigation of the trivial lower bound
for the extremal function, there is exactly one pattern with ex(n, P ) = 0 —
it is the pattern Z that has exactly one 1 entry. The value of the extremal
function for the two patterns S1 and S2 was proved by Füredi and Hajnal in
[7] and we have ex(n, Si) = Θ(nα(n)), where α(n) is the inverse Ackermann
function. The proof uses a reduction to Davenport–Schinzel sequences and
a result by Hart and Sharir from [8].

The fourth category contains the three patterns Q1, Q2, and Q3 and all
three of them have ex(n,Qi) = Θ(n log(n)). For Q1 and Q2, this bound
was proved by Füredi and Hajnal in [7]. For Q3, the upper bound has been
established in the before mentioned paper. The matching lower bound was
proved by Tardos in [20].
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S1 =

(
• •

• •

)
S2 =

 • •
•

•


The pattern R is the only one that has ex(n,R) = Θ(n

3
2 ). We refer to

Section 2.1 where we will show how the value for ex(n, P ) is obtained.

Q1 =

(
• •

• •

)
Q2 =

 • •
•

•



Q3 =

 • •
•

•

 R =

(
• •
• •

)

All patterns up to reflection that have not been listed so far have a linear
extremal function. Notice that this includes as well patterns of weight two
and three. We can conclude that most of the patterns with w(P ) ≤ 4 have
a linear extremal function.

The presented results were not obtained with a theorem such as Theorem
1.7 but rather with a case analysis. Reductions as presented in Appendix
A are a first step towards kind of a theory — but this theory is still very
incomplete.

1.6 Patterns with Exactly Five Entries

There is no exhaustive analysis of patterns with weight five available but for
some patterns, the extremal function is known and we present some of them
here. It is important to notice that we do not present patterns that can be
obtained from patterns P with w(P ) ≤ 4 using reductions as described in
Appendix A.

Tardos investigated in [20] the pattern L4 and concludes that it has
ex(n, L4) = Θ(n). In [9], Keszegh investigates the patterns L3 and H0 and
shows that ex(n, L3) = Θ(n) and ex(n, H0) = Θ(n log(n)).
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L4 =


• •

•
•

•

 H0 =


• •

•
•

•



L3 =


• •

•
•

•


Patterns with weight five play a role in two parts of this paper. In Section

3, we show that removing an arbitrary 1 entry from H0 gives us a pattern
with linear extremal function. In Section 4, we investigate a pattern with
weight five for which the value of the extremal function is not known.

1.7 Exact Bounds

In this section, we list some of the patterns for which we know not only
the asymptotic lower and upper bounds but exact bounds. Notice that the
bounds presented here are not completely tight.

1.7.1 Patterns with at Most Three 1 Entries

For a pattern P with only two entries, we can show a lower bound of n and
an upper bound of n + 1. We argue with a case analysis:

1. P has 1 entries in different rows and in different columns: A
matrix An with 1 entries only in the first row avoids the pattern. If the
entry in the second row of P is to the left of the entry in the first row,
then we can add an entry in the last column of An and the pattern is
still avoided. If the entry in the second row of P is to the right of the
entry in the first row, then we add a 1 entry in the first column of An

and again, the pattern is still avoided.

2. P has 1 entries in different rows: A matrix An with 1 entries in
only one row avoids the pattern but as soon as we add an additional
entry to An, the pattern P is contained.
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3. P has 1 entries in different columns: Same argumentation as for
the first case but now we place the 1 entries into one column.

Füredi and Hajnal show in [7] that a pattern P with at most three 1
entries has

n ≤ ex(n, P ) ≤ 4n.

1.7.2 Pattern L1

For the pattern L1, we can find a lower bound of 4n − 4: a matrix An with
1 entries in only the last two rows and in the last two columns clearly avoids
the pattern L1. Assume that An avoids L1 with maximum weight. In [20],
Tardos shows an upper bound of 5n. He does so by associating every entry
of An with one of four categories. Three of those categories contain at most
n entries and one contains at most 2n entries.

4n− 4 ≤ ex(n, L1) ≤ 5n

L1 =

 • •
•

•


1.7.3 Patterns Q1, Q2, and Q3

In [20], Tardos shows for the pattern Q1 the bounds

n log(n) ≤ ex(n, Q1) ≤ n log(n) + (2− log(e)

2
)n.

For Q2, he proofs a bound of

n log(n) + n− 1 ≤ ex(n, Q2) ≤ n log(n) + (3− log(e)

2
)n.

For the pattern Q3, again Tardos shows in [20] that for n = 2m, we have

n log(n)

2
−O(n) ≤ ex(n,Q3) ≤ n log(n) + O(n).
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1.8 Collection of Patterns

Tardos considers in [20] the extremal function of a collection of patterns:

Definition 1.10. For a collection P = {P1, P2, ...} of patterns, we define
ex(n,P) to be the maximum weight that a matrix An can possibly have under
the condition that it has to avoid all patterns in P.

Tardos shows in [20] that

ex(n, {Q1, Q1}) = 3n− 2.

With the fact that
ex(n, Q1) = Θ(n log(n))

and
ex(n, Q1) = Θ(n log(n))

it follows that

ex(n, {G1, G2}) = Θ(min(ex(n, G1), ex(n, G2)))

does not have to hold. Further investigations of collections of patterns can
be found in Section 3 of [20]. In Section 4.2.3 of this paper, we investigate a
collection of patterns.

2 Similar Settings

In this section, we consider two settings that are similar to ex(n, P ). By
putting them into relation with the extremal function, we hope to get further
insights. A proof in one of the considered settings might give us a proof for
the setting that we are interested in.

2.1 Turán Setting

As we have mentioned in the introduction, Turán type problems in extremal
graph theory are closely related to ex(n, P ):

Definition 2.1. Assume that G is a graph. By ex(n, G), let us denote the
maximum number of edges that a a graph with n vertices can have under the
condition that it does not contain G as a subgraph.
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Notice that for Turán type problems, the second parameter of ex(n, G)
is a graph whereas for ex(n, P ), the second parameter is a pattern.

In Definition 2.1, we consider arbitrary graphs with no ordering relation
on the vertices and in Section 1.1, we have seen that such graphs can be
represented as 0–1 matrices. For the rest of this section, let us assume that
we are considering graphs G(P ) as defined in Section 1.1. To put ex(n, G(P ))
into relation with ex(n, P ), we notice that for ex(n, P ), we are considering

a graph
−→
G(P ) with an ordering relation on the two partite vertex sets (see

Section 1.1). This ordering relation does not exist for ex(n, G(P )) and we can
conclude that in the Turán setting, a graph G(An) with maximum number
of edges has to avoid all possible permutations of a pattern P .

Definition 2.2. Assume that P is a pattern with dimensions l and k. Fur-
ther assume that π1 : {1, ..., l} → {1, ..., l} and π2 : {1, ..., k} → {1, ..., k}
are permutations. A pattern P ′ with the same dimensions as P is called
a permutation of P if only if we can find permutations π1 and π2 so that
∀i, j : Pi,j = P ′

π1(i),π2(j). For a pattern P , denote all permutations of P with

Π(P ).

Because the graph G(An) has to avoid all possible permutations of G(P ),
we can make the following proposition:

Proposition 2.3.
ex(n,G(P )) ≤ min

U∈Π(P )
ex(n, U)

From this proposition, it follows that we obtain a lower bound for ex(n, P )
using ex(n, G(P )).

For the pattern R as presented in Section 1.5, we notice that all per-
mutations of R are equivalent to R. From this observation, we can con-
clude that ex(n,R) = ex(n, G(R)). The pattern R equals to the complete
bipartite graph K2,2 with 2 vertices in each partite vertex set. It is well

known from literature [2, 18] that ex(n, G(R)) = ex(n, K2,2) = Θ(n
3
2 ).

Notice that the upper bound can as well be obtained from Theorem 1.8:

ex(n,K2,2) = O(n2− 1
min(2,2) ) = O(n

3
2 ).

2.2 Exact Match Setting

For the Exact Match setting, we replace the contains and avoids relations
with induced and not-induced relations:
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Definition 2.4. A, B and P are 0–1 matrices of arbitrary dimension:

1. Matrix A induces P if and only if there is a submatrix B of A so that
∀i, j : Pi,j = Bi,j.

2. Matrix A is not-induced by P if and only if A does not induce P .

Building on the induced relation, we define the extremal function for the
Exact Match setting:

Definition 2.5. P is a 0–1 pattern and An is an n × n 0–1 matrix. We
define ex(n, P ) to be the maximum weight of An not inducing P .

We are interested in the relation between ex(n, P ) and ex(n, P ). To
analyze this relation, let us consider two types of patterns:

1. The pattern P contains no 0 entries: For such a pattern, the defi-
nitions for ex(n, P ) and ex(n, P ) are exactly the same and ex(n, P ) =
ex(n, P ) follows.

2. The pattern P contains at least one 0 entry: According to Defini-
tion 2.4, a matrix An containing n2 entries does not induce the pattern
P — ex(n, P ) = n2 holds for all patterns P with at least one 1 entry.

From the two investigated cases, it follows that ex(n, P ) ≤ ex(n, P ) for
all patterns P . For most of the patterns P , the value ex(n, P ) is the trivial
upper bound of n2 and therefore this setting does not help us to learn more
about the extremal function ex(n, P ).

To construct a more interesting setting, let us switch to the point of view
introduced in Section 1.1: One could restrict the number of edges that are
allowed per vertex and require that the resulting graph has to be connected.
It is important that we ask for a graph that is connected because it can be
shown that otherwise, we can subdivide the problem and get again a trivial
upper bound.

In [15], Chung, Jiang, and West consider a very similar setting. In their
setting, the number of edges per vertex is restricted and they ask for con-
nected graphs. But as a difference to the setting considered here, they do
not have an ordering relation imposed on the vertices.
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3 Minimally Non-Linear Patterns

In [20], Tardos asks for minimally non-linear patterns with more than four 1
entries. We start with the definition of minimally non-linear patterns:

Definition 3.1. Let P be a pattern with ex(n, P ) = ω(n). P is a minimally
non-linear pattern if and only if replacing an arbitrary 1 entry with a 0 entry
produces a pattern P ′ with ex(n, P ′) = Θ(n).

As Marcus and Tardos note in [14], any pattern with at most four 1 entries
that has a non-linear extremal function is minimally non-linear. This holds
because all patterns with three 1 entries have linear extremal function.

Keszegh gives in [9] a construction that leads to a minimally non-linear
pattern with more than four 1 entries — the pattern H0. The construction
is general enough so that it could even lead to infinitely many minimally
non-linear patterns. We present Keszegh’s construction together with the
known facts and the open questions.

In [9], it is shown that for all k ≥ 0, there is a pattern Hk = (hi,j) with
ex(n, Hk) = Θ(n log(n)). The pattern Hk has m = 3k + 4 rows and columns
and 1 entries occur exactly at the following positions:

{h4,1, h1,2, h1,3, hm−1,m, hm−2,m} ∪ {h3l+4,3l+1, h3l−1,3l+3, h3l,3l+2|∀l, 1 ≤ l ≤ k}

All positions that have not been mentioned above have 0 entries.

H0 =


• •

•
•

•

 H1 =



• •
•

•
•

•
•

•



3.1 H0 is a Minimally Non-Linear Pattern

Let us consider the pattern H0 and show that all patterns obtained from H0

by removing one 1 entry have a linear extremal function. In the subsequent
paragraphs, we will refer to reductions from Appendix A.
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Let us start with the pattern R0 that was obtained from H0 by removing
the bottom left 1 entry. The pattern R0a can be obtained from Z using
reductions as described in Theorem A.2 and has ex(n,R0a) = Θ(n). Because
R0 is contained in R0a (see Theorem A.1) and with the fact that R0 has more
than one 1 entry, we can conclude that ex(n, R0) = Θ(n).

R0 =

 • •
•
•

 R0a =

 • • •
•
•


The pattern R1 is obtained from H0 by deleting the first 1 entry in the

first row. Notice that if we delete the second 1 entry in the first row, we get
the exact same pattern. In [9], Keszegh shows that a pattern of the form R1a

has a linear extremal function. R1 is contained in R1a (see Theorem A.1)
and we can therefore conclude that ex(n,R1) = Θ(n).

R1 =


•

•
•

•

 R1a =


•

•
•
•

•
•


For the last two entries that can be removed, we notice that by removing

either one of them, we get the same pattern R2. The argumentation is the
same as for R1 — there is a pattern R2a with linear extremal function that
contains R2 and ex(n, R2) = Θ(n) follows.

R2 =

 • •
•

•

 R2a =

 • •
• •

• •


With the investigation of the patterns R0, R1, and R2 we can conclude

that H0 is a minimally non-linear pattern.
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3.2 Minimally Non-Linearity for Patterns H ′
k

Let us show how we can use the pattern Hk to construct a pattern H ′
k that

is a candidate for a minimally non-linear pattern. In a second step, we will
list what needs to be proved so that we can indeed conclude that H ′

k is a
minimally non-linear pattern.

3.2.1 Obtaining H ′
k from Hk

Let us construct the matrix H ′
k as follows:

1. Set Tk = Hk.

2. As long as Tk contains a 1 entry with the property that removing it
produces a matrix Tk with ex(n, Tk) = ω(n2α(n)O(1)

), then remove such
an entry.

3. Set H ′
k = Tk.

By the way how we constructed H ′
k, we know that ex(n,H ′

k) = ω(n2α(n)O(1)
).

In [9], Keszegh shows that there are k + 5 1 entries in Hk with the property
that removing any one of them gives us a pattern with a quasi-linear upper
bound (= O(n2α(n)O(1)

)) for the extremal function. We know additionally
that the matrix Hk contains 3k + 5 1 entries. With those observations, we
can conclude that 3k+5 = w(Hk) ≥ w(H ′

k) ≥ k+5. It is important to notice
that we do not actually have to construct the H ′

k — the above mentioned
bounds are fully sufficient.

From the above bounds, we can conclude that there are infinitely many
pairwise different patterns H ′

k for different k ∈ {1, 2, ...}. This holds because
we know lower and upper bounds on the weight of the pattern H ′

k. So for
example, it is not possible that H ′

1 and H ′
4 are the same pattern. This holds

because
w(H ′

1) ≤ 8 < 9 ≤ w(H ′
4)

Notice that H ′
k is a minimally non-quasi-linear pattern; i.e. removing an

arbitrary entry from H ′
k gives us a pattern with a quasi-linear upper bound.

17



3.2.2 Showing Minimally Non-Linearity for H ′
k

For all patterns H ′
k with k ≥ 1, Keszegh shows that proving the property

of minimally non-linearity comes down to show that a pattern Gk has linear
extremal function. Gk is obtained from Hk by deleting the last three rows,
the last column, and the column that contains the entry in the last row. Let
us sketch why we can reduce the minimally non-linearity of H ′

k to showing
that Gk has a linear extremal function:

He basically shows that by removing the i’th 1 entry from H ′
k, we get a

matrix that is contained in a composition of two matrices Ai
k and Bi

k. All
possible Ai

k’s and Bi
k’s are contained in Gl for some l. It follows that if

we can find a linear extremal function for all Gk, then we can show, using
a result by Keszegh from [9], that the composition of the two matrices Ai

k

and Bi
k is as well linear. This composition contains the matrix that was

obtained by removing the i’th 1 entry from H ′
k — and it follows that proving

minimally non-linearity for H ′
k can be reduced to show linearity for Gk. For

more details, we refer to [9].

G1 =


• •

•
•

•



Keszegh states in [9] the following conjectures:

Conjecture 3.2. [9]

1. For the pattern G1, we have ex(n, G1) = O(n).

2. For the pattern Gk obtained from Hk by deleting the last three rows and
the last column, we have ex(n, Gk) = O(n) (k ≥ 1).

3. There are infinite [sic!] many minimally non-linear patterns.

4. The patterns Hk are minimally non-linear patterns.

Notice that G1 has almost the form of a permutation matrix; only the
column containing the 1 entry in the first row is doubled. We call such a
modified permutation matrix an enriched permutation matrix. For k ≥ 1, all
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Gk are enriched permutation matrices and therefore proving minimally non-
linearity for Hk reduces to showing the linearity of enriched permutation
matrices. Showing this linearity for the general enriched permutation matrix
gives us infinitely many minimally non-linear patterns.

4 The Pattern G1

To learn more about enriched permutation matrices, it might make sense to
first consider a specific instance. We do that with the smallest instance that
plays a role in Keszegh’s proof and that is unknown — the pattern G1.

In this section, we list all the knowledge that we got during the investiga-
tion of the pattern G1. Our investigations did not lead to a tight bound but
we would rather like to prevent you from trying the same paths. We start
out with the known facts about the pattern G1. Secondly, we list facts that
are not closely related to G1 but that might play an important role. Thirdly,
we point out some proof strategies and try to highlight why, according to our
intuition, they did not work out.

4.1 Known Facts

This section gives an overview on the known facts for the pattern G1. First,
we state the known lower and upper bounds — although they are not tight.
In a second step, we observe what happens by removing an arbitrary 1 entry
from G1.

4.1.1 Lower Bound

Theorem 4.1. ex(n,G1) = Ω(n)

Proof. We use the proof idea mentioned for the trivial lower bound of any
pattern: G1 has entries in four rows and five columns. We can fill four
columns of a matrix An entirely with 1 entries. This results in a matrix with
4n entries avoiding G1 — ex(n, G1) = Ω(n) is established.

Notice that we have only established the trivial lower bound — nothing
fancy. The main conclusion from this theorem is that we are still able to
achieve a tight bound of Θ(n). We cannot only establish this lower bound
for G1 but for all enriched permutation matrices.
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4.1.2 Upper Bound

In [10], Klazar gives a proof in the context of Davenport-Schinzel sequences
that, as he points out in [12], can be used in the context of our setting. He
uses a reductions from 0–1 matrices to DS sequences, argues on the maximum
length of the sequence obtained from the 0–1 matrix and concludes about
the maximum weight of the matrix An that avoids the pattern.

Theorem 4.2. [12] For a pattern P with exactly one 1 entry per column,

ex(n, P ) = O(n2α(n)O(1)
) holds.

The pattern G1 contains exactly one 1 entry per column and Theorem
4.2 can therefore be applied. It is important to notice that 2α(n)O(1)

is an
extremely slow growing function. We say that O(n2α(n)O(1)

) is a quasi-linear
upper bound.

Again, this upper bound holds not only for G1 but the very same argu-
ment gives us as well a quasi-linear upper bound for an enriched permutation
matrix.

4.1.3 Removing a 1 Entry from G1

Removing an arbitrary 1 entry from G1 results in a pattern with linear ex-
tremal function. To show this, we use reductions from Appendix A and
proceed with a case analysis:

The pattern RG0 that can be obtained from G1 by removing the left
bottom entry has a linear extremal function. This holds because the pattern
RG0a is a permutation matrix and we can get RG0 from RG0a with the
reduction from Theorem A.2.

RG0 =

 • •
•

•

 RG0a =

 •
•

•


We notice that removing either one of the two entries in the first row

of G1 gives us the same pattern RG1. RG1 is a permutation matrix and it
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follows that ex(n, RG1) = Θ(n).

RG0 =


•

•
•

•


Removing the 1 entry in the second row and removing the 1 entry in

the third row produces both the pattern RG2. RG2 is contained in RG2a

(see Theorem A.1). Keszegh shows in [9] that the pattern RG2a has a linear
extremal function. We can therefore conclude that ex(n,RG2) = Θ(n).

RG2 =

 • •
•

•

 RG2a =

 • •
• •

• •


This result can turn out to be interesting if a tight bound of complex-

ity larger than linear is established for G1. In this case, G1 is a minimally
non-linear pattern. Notice that the results from this section cannot directly
be applied to enriched permutation matrices. One could ask the question
whether it is possible to establish a similar result for arbitrary enriched per-
mutation matrices.

4.2 Some Not Closely Related Facts about G1

In this part, some facts are listed that we run into during our investigation
of G1. We do not claim that they have to be related to find a tight bound
for G1.

4.2.1 Surrounding of G1

We investigate patterns in the surrounding of G1 and define that the sur-
rounding of a pattern P contains patterns that are obtained by moving one 1
entry in P by one position. To consider the surrounding of a pattern is mo-
tivated by the intuition that one could use a reduction, either one presented
in Appendix A or one that is newly found, to determine ex(n, G1).
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Permutation Matrices There are two permutation matrices in the sur-
rounding of G1 — both of them have ex(n, P ) = Θ(n). The bound for the
two matrices could be used to prove a linear bound for G1. Unfortunately,
there are no reductions known that can be used to deduce anything about
G1 based on the linear bound for SG1 and SG2.

SG1 =


•

•
•

•
•

 SG2 =


•

•
•

•
•



Pattern with Linear Extremal Function Besides the permutation ma-
trices that we have just seen, the pattern SG3 has as well a linear extremal
function. In [9], Keszegh shows for the pattern SG3b a linear extremal func-
tion. A linear extremal function for SG3a can be obtained from SG3b using
the reduction mentioned in Theorem A.1. From SG3a, we can obtain a linear
bound for SG3 using the reduction from Theorem A.2. As for the previous
two patterns, there is no reduction known from SG3 to G1.

SG3 =

 • •
• •

•

 SG3a =

 • •
•

•



SG3b =

 • •
• •

• •


Patterns with Quasi-Linear Upper Bound The four patterns SG4,
SG5, SG6, and SG7 have an upper bound of O(n2α(n)O(1)

) (see Theorem
4.2). SG5, SG6, and SG7 contain the pattern S2 and we have therefore with
Theorem A.1 a lower bound of Ω(nα(n)) established for them. As for the
permutation matrices, there are no reductions from any of the three patterns
to G1.
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For the pattern SG4, we have only a linear lower bound and an upper
bound of O(n2α(n)O(1)

).

Theorem 4.3. ex(n,G1) ≤ ex(n, SG4).

Proof. The reductions from Theorem A.1 and A.2 give us this relation.

It is important to notice that ex(n, SG4) = Θ(n) gives us ex(n, G1) =
Θ(n).

SG4 =

 • •
•

• •

 SG5 =


•

• •
•

•



SG6 =


•

• •
•

•

 SG7 =

 • • •
•

•



Super-Linear Patterns In the surrounding of G1, two patterns have a
bound of Θ(n log(n)). Having already an upper bound of O(n2α(n)O(1)

) for
G1, we cannot expect to deduce anything about G1 from the two patterns.

SG8 = H0 =


• •

•
•

•

 SG9 =


• •

•
•

•


SG8 is the same pattern as H0 and therefore we have a tight bound of

Θ(n log(n)). For SG9, there is an easy argument that proves a tight bound
of Θ(n log(n)) — let us show the lower and upper bound separately:

• Lower Bound: The pattern SG9 contains the pattern Q2 and we have
therefore with Theorem A.1 a lower bound of Ω(n log(n)).
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• Upper Bound: SG9a can be constructed from Q2 using the reduc-
tions described in Theorem A.2 and A.4. It follows that ex(n, SG9a) =
Θ(n log(n)) holds. To get SG9 from SG9a, we can employ the reduction
described in Theorem A.1.

Q2 =

 • •
•

•

 SG9a =


• •

• •
•

•



Patterns with Completely Unknown Extremal Function We do not
have a tight bound for the pattern SG10. The trivial linear lower bound of
Ω(n) can be established — but no upper bound that is close to this lower
bound is known. It is important to notice that a linear bound for SG10 gives
us as well a linear bound for G1:

Theorem 4.4. ex(n,G1) ≤ ex(n,G10).

Proof. The reductions from Theorem A.1 and A.2 give us this relation.

SG10 =


• •

•
•

•


4.2.2 Extremal Function for G1 in the Turán Setting

As mentioned before, the relation

ex(n,G(P )) ≤ min
U∈Π(P )

ex(n, U)

holds between the main setting and the Turán setting. To learn more about
the extremal function of G1 in the Turán setting, we have to consider permu-
tations of G1. Finding a permutation with a linear extremal function gives us
as well a linear extremal function for the Turán setting. This holds because
we can argue for the Turán setting in the same way as we have argued for
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the main setting — we can construct a matrix with linear weight that avoids
all permutations of the pattern G1.

PG1 =


• •

•
•

•


It is easy to see that PG1 ∈ Π(G1) can be obtained from a permutation

matrix with the reduction described in Theorem A.2. We can conclude that
ex(n, PG1) = Θ(n) and that therefore ex(n, G(G1)) = Θ(n).

4.2.3 Extremal Function of G1 and G
|
1

Assume that G
|
1 is the reflection of G1 at the vertical axis. In the rest of this

section, we investigate the collection P = {G1, G
|
1}.

G1 =


• •

•
•

•

 G
|
1 =


• •

•
•

•



Theorem 4.5. For the two patterns G1 and G
|
1, ex(n, {G1, G

|
1}) = Θ(n)

holds.

To prove this theorem, we use ideas mentioned in [9] and a reduction from
the main setting to DS sequences2 as mentioned by Füredi and Hajnal in [7].

Definition 4.6. Let u be a sequence and S(u) denote the set of symbols that
appear in u. The length of u is written as |u| and the number of symbols
in u as |S(u)|. We say that two sequences u = u1u2...un and v = v1v2...vn

are equivalent if and only if there is a bijection f : S(u) → S(v) so that
∀i ∈ {1, ..., n} : f(ui) = vi holds. The sequence u contains v if and only if v
is equivalent to a subsequence of u. Otherwise, we say that u avoids v.

As for the extremal function considered in this paper, we define an ex-
tremal function for DS sequences:

2Davenport-Schinzel sequences
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Definition 4.7. Define a close repetition in a DS sequence as a block of at
least |S(u)| symbols that are equal. Let ex(n, u) be the maximum length of
a sequence with n symbols that avoids the sequence u and that has no close
repetition.

So far, a setup for DS sequences that is similar to the main setting has
been presented. We show now a mapping, as presented in [7], from 0–1
matrices to DS sequences and back. Let us first show how to transform a
0–1 matrix into a DS sequence:

Procedure 4.8. Given a 0–1 matrix An. Number the rows from 1 to n and
replace every 1 entry in An with the number of the row that it is located at —
e.g. all 1 entries in the third row are replaced with 3. To construct the DS
sequence v′, read the columns top-down starting with the first column. Ignore
all 0 entries and add all other entries to v′.

Notice that |v′| is equal to the weight of An (|v′| = w(An)), that |S(v′)| ≤
n, and that v′ may contain close repetitions. If we have a close repetition,
we remove up to one all entries of the block — e.g. abccccd becomes abcd.
Using the knowledge of the construction of v′, we know that every removed
entry can be mapped to a column and that every column has at most one
removed entry. Because there are n columns, it follows that for the v that is
constructed from v′ by removing all close repetitions, we have |v| ≥ w(An)−n
and |S(v)| ≤ n.

The transformation of a Davenport–Schinzel sequences to 0–1 matrices is
rather simple:

Procedure 4.9. To transform a DS sequence v to a 0–1 matrix An, read
v and start populating the first column with 1 entries according to the row
numbers mentioned in v — e.g. v = 1, 3, 5, ... gives us a first column with 1
entries in the first, third, and fifth row. For the first column, do this as long
as an increasing row number can be read from v. As soon as the row number
is decreasing, start the same process over again with the second column and
continue this way.

The presented mapping helps us to use a theorem presented in [13] in the
context of the main setting:

Theorem 4.10. Suppose that a and b are two symbols and u = u1a
2u2a is a

sequence such that b /∈ S(u). Then ex(n, u1abiau2abi) = Θ(ex(n, u)) for any
i ≥ 1.
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It is easy to see that ex(n, a9
1) = Θ(n) holds3. Starting with a9

1, we
can build the string ul = a3

1a
3
2...a

3
l−1a

6
l a

3
l−1...a

3
2a

6
1a

3
2...a

3
l−1a

3
l with the help of

Theorem 4.10 and know that ex(n, ul) = Θ(n) for all l ≥ 1.
As a last building block, we need a lemma from [5] that is known as the

Erdős-Szekeres Lemma:

Lemma 4.11. Any sequence of numbers of length (k − 1)2 + 1 contains a
monotone subsequence of length k.

After this lengthy setup, we are ready to start with the main theorem of
this section. First, we make the following observation:

Observation 4.12. Assume that An is a 0–1 matrix and v has been obtained
from An as described in Procedure 4.8. The pattern G1 is contained in An

if we find the string g1 = daaacb for a < b < c < d in v. We obtain g1 by
mapping the pattern G1 to DS sequences and by introducing the third a entry,
we make sure that c is located in a column that is to the right of the column
where the second a is located at.

Similar reasoning lets us conclude that G
|
1 is contained in An if g

|
1 =

bbcaaad for a < b < c < d is contained in v.

G1 =


a a a

b
c

d

 G |
1 =


a a a

b b
c

d


From now on we assume that ex(n, {G1, G

|
1}) = ω(n) and that An is

a matrix that avoids {G1, G
|
1} with maximum weight. In the following

paragraphs, we will show a contradiction and can therefore conclude that
ex(n, {G1, G

|
1}) = O(n). With the observation that there is a trivial lower

bound of ex(n, {G1, G
|
1}) = Ω(n), we will be able to conclude that for the

collection {G1, G
|
1}, we have ex(n, {G1, G

|
1}) = Θ(n).

Let us transform the matrix An to v as seen in Procedure 4.8; it is known
that |v| ≥ w(An)− n = ω(n) and |S(v)| ≤ n. Construct a string

ul = a3
1a

3
2...a

3
l−1a

6
l a

3
l−1...a

3
2a

6
1a

3
2...a

3
l−1a

3
l

3a9
1 means that the symbol a1 is repeated nine times
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for l = (4− 1)2 + 1 = 10. We know that ex(n, u10) = Θ(n) and therefore u10

is contained in v.
From Lemma 4.11, it is known that the string w = a3

1a
3
2...a

3
9a

3
10 contains

a monotone subsequence of length 4 — but we do not know whether this
monotone subsequence is ascending or descending. We use a case analysis:

• Subsequence is monotone ascending: Assume that ai(1), ai(2), ai(3)

and ai(4) are the four monotone ascending entries — i(1) < i(2) <
i(3) < i(4) and ai(1) < ai(2) < ai(3) < ai(4) holds. With the fact
|v| = ω(n), we know that the subsequence

uasc = a3
i(1), a

3
i(2), a

3
i(3), a

6
i(4), a

3
i(3), a

3
i(2), a

6
i(1), a

3
i(2), a

3
i(3), a

3
i(4)

is contained in v. Setting

ai(1) = a

ai(2) = b

ai(3) = c

ai(4) = d

we can conclude that the subsequence

g1,asc = a3, b3, c3, d6, c3, b3, a6, b3, c3, d3

is contained in v. But with the observation that the pattern G
|
1 can be

represented as g
|
1 = bbcaaad for a < b < c < d and from the fact that

g1,asc = a3,b,b,b, c,c2, d6, c3, b3, a, a, a,a3, b3, c3,d,d2

it follows that the pattern G
|
1 is contained in An — a contradiction to

the assumption that An avoids both G1 and G
|
1.

• Subsequence is monotone descending: The same argumentation
as above is used but this time we make use of G1. Assume that ai(1),
ai(2), ai(3), and ai(4) is a monotone descending sequence — i(1) < i(2) <
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i(3) < i(4) and ai(1) > ai(2) > ai(3) > ai(4) holds. Again with |v| = ω(n),
we know that the subsequence

udesc = a3
i(1), a

3
i(2), a

3
i(3), a

6
i(4), a

3
i(3), a

3
i(2), a

6
i(1), a

3
i(2), a

3
i(3), a

3
i(4)

is contained in v. Setting

ai(1) = d

ai(2) = c

ai(3) = b

ai(4) = a

we conclude that the subsequence

g1,cont = d3, c3, b3, a6, b3, c3, d6, c3, b3, a3

is contained in v. We know that the pattern G1 can be represented as
g1 = daaacb for a < b < c < d and from the fact that

g1,cont = d,d2, c3, b3, a, a, a,a3, b3, c,c2, d6, c3,b,b2, a3

it follows that the pattern G1 is contained in An — a contradiction to
the assumption that An avoids both G1 and G

|
1.

From the two contradictions we can conclude that our initial assumption
ex(n, {G1, G

|
1}) = ω(n) is wrong and together with the trivial linear lower

bound we can conclude that ex(n, {G1, G
|
1}) = Θ(n) holds.

We can apply the very same proof strategy to other collections of patterns,
e.g. we can show that:

Theorem 4.13. For the two patterns G1 and G1, ex(n, {G1, G1}) = Θ(n)
holds.
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For this collection of patterns, we do not give a proof here but men-
tion that the DS equivalent of the pattern G1 is contained in the ascending
subsequence.

G1 =


•

•
•

• •


4.3 Proof Ideas

We consider in this section possible proof ideas for the pattern G1. None
of them gave us a linear upper bound but we would like to point out the
intuition why they failed.

4.3.1 Adaption of the Permutation Matrix Proof

The pattern G1 is almost a permutation matrix. It is possible that the proof
for permutation matrices by Marcus and Tardos [14] can be tweaked in a way
so that we can as well prove a linear bound for G1.

Let us first present the most general ideas of this proof by Marcus and
Tardos. In a second step, we will show why it is not obvious how to tweak
this proof so that it can be used for G1.

Original Setup The idea is to reduce the original problem to a problem
of smaller size. This produces a recursive definition that we can solve by
induction — and that turns out to be linear. For a permutation matrix of
size k × k, we reduce the problem of size n to a problem of size n

k2 .
Assume that we have a matrix An that avoids the pattern with maximum

weight. We divide An into ( n
k2 )

2 blocks of size k2×k2. The blocks are defined
as Si,j = {ai′,j′ : i′ ∈ [k2i + 1, k2(i + 1)], j′ ∈ [k2j + 1, k2(j + 1)]}. A block
is called wide (respectively tall) if it contains 1 entries in at least k columns
(respectively rows).

Based on An and its subdivision into blocks, we define a new matrix B.
B has dimension n

k2 × n
k2 and has a 1 entry at Bi,j if and only if there is at

least one 1 entry in block Si,j.
We present now the three properties that are the basis for the recursion:

1. The matrix B avoids the pattern P .
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2. The number of blocks in Cj = {Si,j : i = 1... n
k2} that are wide is less

than k
(

k2

k

)
.

3. The number of block in Ri = {Si,j : j = 1... n
k2} that are tall is less than

k
(

k2

k

)
.

Adaption for G1 If we want to adapt the proof by Marcus and Tardos for
our case, we have to analyze the three properties that the proof builds on:

1. The matrix B avoids P : Marcus and Tardos give the following proof
for this property in the context of permutation matrices: Assume that
B contains P . Consider the 1 entries that represent P . A 1 entry in B
corresponds to a block in An that is non-empty. For every 1 entry in
B that represents P , choose an arbitrary 1 entry in the corresponding
block of An. An contains P as well — a contradiction.

With A10 and B, we have a simple counter example showing us that
this property does not hold for G1.

A10 =



•

•
•

•

•
•


B =


•

• •
•

•
•



Notice that the failure to adapt this first property takes us the possibil-
ity to define a recursion. There might be an alternative way of defining
a matrix B but intuitively, it is difficult to define an appropriate B
because

(a) we have to make sure that if An avoids P , then B avoids P as well

(b) we have to show that most of the blocks containing 1 entries do
not contain a lot of them
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We could not find a definition of blocks so that the above conditions
are fulfilled.

2. The number of blocks in Cj = {Si,j : i = 1... n
k2} that are wide

is less than k
(

k2

k

)
: Marcus and Tardos argue with the pigeonhole

principle that if there are k
(

k2

k

)
or more wide blocks in Cj, then we can

find k blocks that have a 1 entry in the columns c1 < c2 < ... < ck. From
those k blocks, we can choose the 1 entries according to the permutation
matrix — that means the permutation matrix is contained in An and
we have a contradiction.

It seems to be very difficult to adapt this proof for the pattern G1. Let
us argue with the k = 5 columns that contain 1 entries in 5 blocks. It
is not entirely trivial to establish the condition that in the first of the 5
blocks, the 1 entries in columns c2 and c3 have to be in the same row.

3. The number of blocks in Ri = {Si,j : j = 1... n
k2} that are tall is

less than k
(

k2

k

)
: Marcus and Tardos argue here the same way as they

did for property 2. If there are more than k
(

k2

k

)
tall blocks in Ri, then

we have rows r1 < r2 < ... < rk so that there are k blocks with a 1
entry in every of those rows. We can therefore find a representation for
the pattern P and have a contradiction.

In G1, we have two 1 entries that are in the same row. The above idea
guarantees that we can represent G1 and we can therefore conclude
that the third property holds for G1.

Conclusion Only one of the three necessary properties can be adapted
direclty for G1. With the first property, the most important property cannot
be adapted in the same way. The first property is the most important one
because it allows us to define a recursion. Because this first property fails, the
authors assume that it might be difficult to adapt the proof of permutation
matrices for G1.

4.3.2 Reduction to DS Sequences

The reduction from 0–1 matrices to DS sequences is an often used proof
strategy, e.g. Füredi and Hajnal use it in [7] and Keszegh in [9]. This
reduction to DS sequences allows us to reuse the theory of DS sequences.
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We presented in Section 4.2.3 a proof for a linear bound for the collection
{G1, G

|
1}. This proof uses a reduction from 0–1 matrices to DS sequences

and is historically the result of a failed proof for G1. In the subsequent
paragraphs, we will analyze why the proof works for {G1, G

|
1} but not for

G1.
In Section 4.2.3, we refer to the Erdős-Szekeres Lemma from which follows

that in a sequence of (k − 1)2 + 1 different numbers, we have a monotone
sequence of length at least k. We do not know whether this sequence is
ascending or descending. With the counter examples z1 = 1, 2, 3, ..., (k −
1)2 + 1 and z2 = (k − 1)2 + 1, (k − 1)2, ..., 3, 2, 1 we can easily see that
there are sequences where there is no descending respectively no ascending
subsequence.

In the proof of a linear bound for the collection {G1, G
|
1}, we use two

building blocks from DS sequence theory:

1. The Erdős-Szekeres Lemma. It say that ‘Any sequence of numbers of
length (k − 1)2 + 1 contains a monotone subsequence of length k’.

2. The sequence ul = a3
1a

3
2...a

3
l−1a

6
l a

3
l−1...a

3
2a

6
1a

3
2...a

3
l−1a

3
l for which we know

that ex(n, ul) = Θ(n) holds.

We argue with the Erdős-Szekeres Lemma that if we choose l = (k−1)2+1,
then we have a monotone subsequence of length k in ubuild,l = a3

1a
3
2...a

3
l−1a

3
l .

The Erdős-Szekeres Lemma does not tell us whether the sequence is ascending
or descending.

Assume that An is a matrix avoiding G1 with maximum weight. An is
mapped to a DS sequence v with Θ(w(An)) = Θ(|v|). We proceed by case
analysis:

1. Let us assume that the monotone subsequence in ubuild,l = a3
1a

3
2...a

3
l−1a

3
l

is descending. As we have shown in Section 4.2.3, the DS represen-
tation of G1 is contained in ul. Because we know that ex(n, ul) =
Θ(n) and by the fact that Θ(w(An)) = Θ(|v|), we can conclude that
ex(n,G1) = Θ(n) holds for this case.

2. Assume now that the subsequence in ubuild,l = a3
1a

3
2...a

3
l−1a

3
l is ascend-

ing. If we assume that ex(n,G1) = ω(n), then we know that

g1,asc = a3, b3, c3, d6, c3, b3, a6, b3, c3, d3
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for a < b < c < d is contained in v. As mentioned in Section 4.2.3, the
DS sequence representation of G1 is g1 = daaacb with a < b < c < d.
It is easy to check that we cannot find g1 in g1,asc. We can conclude
that the proof fails here.

There are two possible ways to fix this proof:

1. We can show that we have a descending monotone sequence in ubuild,l =
a3

1a
3
2...a

3
l−1a

3
l . This might be possible using knowledge from our special

setting but the intuition tells us that this is not very likely.

2. We can show that uproof,l = a3
1a

3
2...a

3
l−1a

6
l a

3
l−1...a

3
2a

6
1a

3
2...a

3
l−1a

6
l a

3
l−1...a

3
2a

3
1

has ex(n, uproof,l) = Θ(n). Having this bound established for uproof,l,
we could argue for the case that we have an ascending subsequence in
ubuild,l in exact the same way as for the descending subsequence. We
just use the sequence u′

l = a3
l a

3
l−1...a

3
2a

6
1a

3
2...a

3
l−1a

6
l a

3
l−1...a

3
2a

3
1 instead.

As far as we know, no such result is known. It is important to notice
that there is a result by Klazar from [11] that shows that 7n − 9 ≤
ex(n, ab2a2b) ≤ 8n − 7. This result bounds a sequence linearly that is
similar to the class uproof,l.

We can conclude that this specific proof idea failed — although it might
be possible to fix this proof. It is important to notice that there might be
other proof strategies using reductions to DS sequences. We outlined here
only one possibility.

4.3.3 Categorize Entries of An

In [20], Tardos proves a linear upper bound for L1 by categorizing the entries
of the matrix An that avoids L1 with maximum weight. He shows that every
1 entry in An belongs to one of four categories. Every category contains only
a linear number of entries and it follows that there is only a linear number
of entries in An.

A similar proof idea is used by Füredi in [6]. He shows that every entry
belongs to one of two categories and that there are at most O(n log(n))
entries per category. With this observation, he proves an upper bound of
O(n log(n)).

We tried both to directly adapt the proof for L1 and to use the general
proof idea. All our trials failed. It is rather difficult to argue why they failed.
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The intuition is that we were not able to find the correct categories and that
the left lower entry of G1 produces some difficulties.

4.3.4 Computationally Explore the Space of All Matrices

To computationally explore the space of all matrices with small dimension is
not exactly a proof idea. But we mention it here nevertheless.

Assume that An avoids the pattern G1 with maximum weight. The in-
tuition is that if we know how the matrix An looks like for small n, we can
maybe deduce something about a possible proof strategy. We started an
investigation of small cases. For n = 6 we have ex(6, G1) = 30. The matrix
A6 is an example for a matrix that attains this bound.

A6 =


• • • • • •
• • • •
• • • •
• • • • • •
• • • • • •

• • • •


For n = 7, we were able to establish ex(n,G1) ≥ 37. The matrix A′

7 attains
this bound.

A′
7 =



• • • • • • •
• • • • • •
• • • • • •

• • • •
• • • • •
• • • • •

• • • •


We were not able to establish an upper bound for n = 7. To do so, one
had to test

(
49
38

)
= 29135916264 ≈ 29 ∗ 109 matrices. If we could test 106

matrices per second, this would take about 8 hours. The reason why we were
not able to establish the upper bound is that our implementation currently
takes 8 seconds to test 106 matrices. But one can conclude that with enough
resources, it is possible to establish this upper bound.

For n = 8, we have ex(8, G1) ≥ 44. The matrix A′
8 attains this bound but

to establish an upper bound of 44, we had to test
(
64
45

)
= 8.71987813 ∗ 1015

matrices. Assuming again that we can test 106 matrices per second, this
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takes about 276 years. It follows that even for very small values of n, it is
not possible to computationally explore ex(n, G1).

A′
8 =



• • • • • • • •
• • • • • •
• • • • • •

• • • •
• • • • •
• • • • • •

• • • • •
• • • •


5 Patterns Composed from a Linear Pattern

and an Extremal Entry

In this section, we consider patterns that are composed from a pattern L
with linear extremal function and from a single 1 entry. The pattern L is
expanded with an empty first column and an empty last row. The 1 entry is
added in the intersection of the newly added row and column. We say that
all those patterns are in class P .

P 3 P =

 L

•



For all P ∈ P, we try to establish an upper bound for the extremal
function. Notice that the patterns S2, H0, and Q2 are in class P . With
ex(n,H0) = Θ(n log(n)) and H0 ∈ P , it follows that we can only hope to
establish ex(n, P ) = O(n log(n)).

Q2 =

 • •
•

•


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S2 =

 • •
•

•

 H0 =


• •

•
•

•


Conjecture 5.1. All patterns P ∈ P have ex(n, P ) = O(n log(n)).

To establish an upper bound for the extremal function of patterns from P ,
we have to consider all possible n × n matrices and argue that they cannot
contain more than O(n log(n)) entries while avoiding an arbitrary pattern
P ∈ P . Let us characterize the n× n matrices by the last entry per column.
For column j, we denote the row index of the last entry in this column by
l(j):

l(j) =

{
0 : ∀i : 1 ≤ i ≤ n ∧ Pi,j = 0
i : Pi,j = 1 ∧ ∀k > i : Pk,j = 0

In the next two sections, we will investigate two classes of matrices that are
characterized with the help of l(j).

5.1 Extreme Case

For a matrix An that avoids a P ∈ P , we say that An ∈ E if and only if there
is a k with 1 ≤ k ≤ n so that

∀i < k : l(i) ≤ 1 ∧ ∀j > k : l(k) ≥ l(j)

By definition we know that in the first k columns, there are at most k 1
entries. Assume that (An)l(k),k represents the left lower 1 entry of P . Then
we know that in the intersection of the last n− k − 1 columns and the first
l(k) − 1 rows, there are at most O(max(n − k − 1, l(k) − 1)) 1 entries —
otherwise, the pattern P is contained in An. Only the last 1 entries per
column and the 1 entries in the k’th column can be outside of the covered
area and it follows that for all matrices An ∈ E avoiding P ∈ P , they contain
at most n + n + O(max(n− k − 1, l(k)− 1)) = O(n) 1 entries.
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E 3 An =




5.2 l(j) on Diagonal

Let us consider the class of matrices M that have the last entries l(j) on the
diagonal from the left upper to the right lower corner — or said differently:

∀j : l(j) = j.

We show that a matrix M ∈ M avoiding a pattern P ∈ P has at most
O(n log(n)) entries.

For an n× n matrix An ∈M avoiding P ∈ P with maximum weight, we
say that si is the square that covers the area of the intersection of the first
i− 1 rows and the last i− 1 columns. We say that si is rooted at the entry
(An)i,i.

We state the key observation that lets us establish an upper bound of
O(n log(n)) 1 entries for a matrix An avoiding P ∈ P :

Assume that An ∈ M and we can conclude that (An)l(n
2
), n

2
= 1. Further

assume that the left lower entry of P is represented by (An)l(n
2
), n

2
. Notice

that sn
2

lies entirely to the right and above (An)l(n
2
), n

2
— that means that if

sn
2

contains L, then P is as well contained in An and we have a contradiction.
L is a pattern with linear extremal function and it follows that there are at
most O(n

2
) 1 entries in an sn

2
that avoids L. Notice that for a constant n,

there might be a constant number of 1 entries in sn
2
.

Observe now that the square sn
2

does not only give us an upper bound
on the number of 1 entries that can be contained in sn

2
but that it divides

as well the problem into two subproblems — have a look at the figures. In
the figures, we denote the 1 entries on the diagonal with black points. Grey
points symbolize possible locations of points. The figures show the squares
si after the first, second, and third level of the recursion.
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

O(n
2 )





O(n
2 )

O(n
4 )

O(n
4 )




O(n
2 )

O(n
4 )

O(n
4 )



Let E(n) be the number of 1 entries that are covered with squares si. We
formulate the above mentioned idea with a recursive formula:

E(n) ≤
{

C : n ≤ n0

k n
2

+ 2E(n
2
) : otherwise

For constant n’s, we have only a constant number of 1 entries in the
matrix An. Let us say that all n ≤ n0 are of constant size. It follows that
we can choose a constant C so that ∀n ≤ n0 : E(n) ≤ C.

For n > n0 and a constant k that is dependent on the pattern L, we have
at most k n

2
1 entries in the square sn

2
. This holds because we know that

L is a pattern with ex(n, L) = Θ(n). To obtain the two subproblems, we
basically divide the matrix An into four quarters. With the square si, we
have already considered the right upper quarter. We know that there are no
1 entries in left lower quarter. Remain the left upper and right lower quarter.
Those two quarters have the exact same form as the original matrix — we
have our two subproblems of size ≈ n

2
. To solve the recursion, we assume

39



that E(n) ≤ An log(n) + Cn. For n ≤ n0,

E(n) ≤ C ≤ An log(n) + Cn

holds for all A ≥ 0 and we have therefore establish the base case. It can be
shown with induction that there is an A ≥ 0 so that for arbitrary n,

E(n) ≤ ... ≤ An log(n) + Cn = O(n log(n))

holds.
So far, we have counted all 1 entries that are covered by the si’s in the

recursive process. In total, we have three categories of entries:

1. The entries that are covered with squares si. As we have shown, there
are at most O(n log(n)) such 1 entries.

2. The entries Al(j),j. There is exactly one such entry per column and
therefore we have n 1 entries in this category.

3. The entries Al(j)−1,j are not covered by the si. Again, we have at most
one such 1 entry per column and it follows that there are at most n 1
entries in this category.

We can conclude that a matrix M ∈ M avoiding the pattern P ∈ P has at
most O(n log(n)) 1 entries. To prove ex(n, P ) = O(n log(n)) for all P ∈ P ,
we had to show that the matrix An avoiding P with maximum weight is
contained in the class M.

5.3 Adaption for Arbitrary Matrices

We see two possible ways to adapt the result from the last section for arbitrary
matrices An /∈M:

1. Show that the class M contains the matrix avoiding P ∈ P with max-
imum weight.

2. Solve the recursion for the general case and show that there are at most
O(n log(n)) entries contained in a matrix An avoiding P .

Let us consider the two cases and argue why it might be difficult to get
a solution using the considered approach:
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1. To explore the space of matrices around the class M seems like a good
idea. If one could show that for every N /∈ M, there is a series of
steps from an M ∈M to N so that we leave the weight unchanged or
decrease it in every step, then we knew that the class M contains the
matrix An avoiding P with maximum weight. Unfortunately, one soon
realizes that there are matrices N /∈ M where we have more 1 entries
than for the M ∈ M with maximum weight avoiding P . It follows
that there cannot be a stepwise argument as mentioned above. The
hope remains that there is no matrix that has an asymptotically higher
weight than O(n log(n)).

2. Solving the recursion as given in the previous section for the general
case does not give us an upper bound of O(n log(n)). The intuition is
that using only the squares si to estimate the number of 1 entries to
the right and above of a 1 entry Al(j),j is not sufficient. One rather
has to include the whole region to the right and above the entry Al(j),j.
This turns out to be difficult because by including the whole region to
the left and above, we might count 1 entries more than once. We could
not find a good way to employ the inclusion / exclusion principle —
but this might be a good starting point.

We were not able to prove Conjecture 5.1 with either of the two mentioned
strategies. It might be that there is different strategy that can be used to
prove an upper bound for P ∈ P .

6 Conclusion

We considered an extremal function as it was presented in [7] and gave an
overview of the results. The connection to Turán type problems and to
an extremal function based on the induced relation has been mentioned. We
then gave an overview on minimally non-linear patterns and presented results
by Keszegh. Motivated by an open problem brought up by Keszegh, we
investigated the pattern G1. We listed several properties of G1 and sketched
a few proof ideas. In the last section, we conjectured an upper bound for a
class of patterns and showed bounds on the weight of special matrices.
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A Reductions

In this section, we present the known reductions for the setting defined in
Definition 1.6. We do not state proofs here but rather point to the papers
where the proofs can be found. Assume for the following that P and P ′ are
patterns.

Theorem A.1. [7] If P contains P ′, then ex(n, P ′) ≤ ex(n, P ).

Theorem A.2. [7] If P ′ is obtained from P by adding a first column to P
with a single 1 entry next to a 1 entry of p, then ex(n, P ) ≤ ex(n, P ′) ≤
ex(n, P ) + n.

Theorem A.3. [7] If we get P ′ by removing all blank rows and columns from
P , then ex(n, P ′) ≤ ex(n, P ) ≤ O(ex(n, P ′) + n).

Theorem A.4. [7] If P ′ is obtained from the pattern P by adding an extra
column containing a single 1 entry between two columns of P and the newly
introduced 1 entry has 1 next to it on both sides, then ex(n, P ) ≤ ex(n, P ′) ≤
2ex(n, P ).

Theorem A.5. [9] Let A and B be two patterns. Assume that pattern A has
got a 1 at its lower right and B at its upper left entry. Let C be a pattern
consisting of A at its upper left part and B at its lower right part with exactly
one common entry, which is the 1 entry mentioned. The other entries are
blank. Then max(ex(n, A), ex(n,B)) ≤ ex(n, C) ≤ ex(n,A) + ex(n, B).

Theorem A.6. [9] Let C be a pattern containing exactly one 1 entry in
its leftmost column, in its rightmost column, in its first row and in its last
row as well. These 1 entries are in the upper left and in the lower right
corner positions of C. Let A be the pattern obtained from C by deleting
its last row and column. Respectively, B is obtained from C by deleting its
first row and column. In this case max(ex(n,A), ex(n, B)) ≤ ex(n, C) ≤
16(n + ex(n, A) + ex(n,B)).

Theorem A.7. [9] Let A be a pattern which has two 1 entries in its first
row in column i and i + 1 for a given i. Let A′ be the pattern obtained from
A by adding two new columns between the ith and the (i + 1)th column and
a new row before the first row with exactly two 1 entries in the intersection
of the new row and columns. Then ex(n,A′) = O(ex(n, A)).
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B Task Formulation

A submatrix of a matrix A is obtained from A by deleting rows and columns.
A 0/1-matrix A avoids another 0/1-matrix (pattern) P if no matrix P ′ ob-
tained from P by increasing some of the entries is a submatrix of A. The
quantity of interest here is the maximal number of 1 entries in a n by n
matrix avoiding a pattern P , let us denote it by ex(n, P ). In [14] they show
that if P is a permutation matrix then ex(n, P ) = O(n). Moreover the or-
der of magnitude of ex(n, P ) for all patterns with four 1 entries have been
investigated in [7] and in [20].

Goal: The goal of this thesis is to investigate ex(n, P ) for other small
patterns. Füredi and Hajnal [7] ask for the characterization of all patterns P
with ex(n, P ) = O(n). Here we would like to find minimal non-linear patterns
P with five 1 entries (minimality w.r.t number of 1-entries), ex(n, P ) = ω(n)
or show that they don’t exist.

Contact Person: Robert Berke, berker@inf.ethz.ch, CAB G37.2, Tel:
(044) 632-7182
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[1] Dan Bienstock and Ervin Györi. An extremal problem on sparse 0-1
matrices. SIAM J. Discrete Math, 4:17–27, 1991.

[2] W. G. Brown. On graphs that do not contain a thomsen graph. Canad.
Math. Bull., 9:281–285, 1966.
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