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Abstract

Let the center point be the point that minimizes the maximum
distance from a point of a given point set to the center point. Finding
this center point is referred to as the smallest enclosing ball problem.
In case of points with Euclidean distance functions, the smallest en-
closing ball is actually the center of a geometrical ball.

We consider point sets with points that have distance functions
with strictly convex level sets. For such point sets, we show that the
smallest enclosing ball exists, is unique, and can be computed using an
algorithm for solving LP-type problems as it was introduced by Sharir
and Welzl in [34]. We provide a list of distance functions, show that
they have strictly convex level sets, and hint at the implementations of
the basic operations used by the LP-type algorithm. In a last part, we
analyze approximative solutions of the smallest enclosing ball problem
and conclude that there are no ε-core sets for some of the considered
distance functions.
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1 Introduction

We consider the problem of finding the smallest enclosing ball for a point set
which is defined as finding a center c and a radius r so that the maximum
distance r from a point of the point set to the center c is minimized. The
distance between points and possible centers can be defined by arbitrary
distance functions and dependent on the distance functions, the smallest
enclosing ball has different properties; e.g. for some distance functions, the
smallest enclosing ball is unique and for others it is not.

The smallest enclosing ball problem has been investigated for several dis-
tance functions, e.g. for the Euclidean norm [37] or for Bregman divergences
[31]. In Section 1.1, we give an overview of the distance functions that have
been considered in the literature.

In this thesis, we investigate the smallest enclosing ball problem for a
family of distance functions that have strictly convex level sets; a more formal
definition will be provided in Section 1.2. Every point from the point set can
have its own distance function but the distance function has to be from the
family of distance functions with strictly convex level sets. The problem of
the smallest enclosing ball is reformulated as finding a center c and a radius
r so that the maximum distance r — as perceived by the point p — between
c and a point p from the point set is minimized.

The introduction is structured as follows. First, we give on overview of
related areas. Second, we defined the conventions that will be used in this
thesis. Third, we acknowledge received support and give an outline. Last,
we give an illustration that can be used to present the smallest enclosing ball
problem considered in this thesis to Jane and John Doe.

1.1 Overview of Related Areas

In this section, we present smallest enclosing ball problems that are related
to the setting we are considering here.

1.1.1 Euclidean Norm and Ellipsoids

The smallest enclosing ball problem was according to Nielsen and Nock1 [30]
first mentioned by J.J. Sylvester in 1857 [35]. Let us define the smallest
enclosing ball problem for the Euclidean norm:

Definition 1.1. For a point set P ⊂ Rd, the smallest enclosing ball with

1we use Nielsen’s and Nock’s overview as a basis for our overview
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center c and radius r is a solution of the optimization problem

minimize r
subject to ∀p ∈ P : ‖c− p‖ ≤ r

c ∈ Rd.

This definition of the smallest enclosing ball is in accordance with our
natural understanding of a smallest enclosing ball; a balloon of spherical form
that is wrapped around points and that is shrunk until it cannot be shrunk
further without loosing one of the points.

Megiddo presented in [28] the first algorithm that solves the smallest
enclosing ball problem in linear time for fixed dimension. Welzl presented
in [37] a randomized algorithm that solves the problem in expected linear
time for fixed dimension. Welzl’s algorithm is more practical as the hidden
constants that depend on the dimension are smaller than in Megiddo’s al-
gorithm. Further, Fischer, Gärtner, and Kutz present in [14] an algorithm
for the smallest enclosing ball problem that performs well in practice for
reasonably high dimension.

In [37], Welzl shows that the smallest enclosing ellipsoid can be computed
in expected linear time for fixed dimension using the same type of algorithm
as is applicable to the smallest enclosing ball problem.

1.1.2 LP-Type Problems

As a generalization of the smallest enclosing ball problem as presented in
[37], Sharir and Welzl introduced in [34] an abstract framework for problems
nowadays called LP-type problems. This abstract framework contains the
smallest enclosing ball problem but allows a formulation of the problem that
is not as close to the geometric properties of a ball as the algorithm presented
in [37]. Matoušek, Sharir, and Welzl provide in [27] an improved analysis of
the algorithm presented in [34]; they show that the algorithm solves LP-type
problems in expected time linear in the number of points and subexponential
in the dimension.

As we will see, the problem of the smallest enclosing ball for distance
functions with strictly convex level sets is an LP-type problem.

1.1.3 Bregman Balls

Nielsen and Nock claim in [31] that Welzl’s algorithm from [37] can be ap-
plied to point sets with Bregman divergences as they were introduced by
Bregman in [3]. The family of Bregman divergences includes the L2

2 norm,
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the Kullback–Leibler divergence [22], and the Itakura–Saito divergence. In
general, the triangle inequality does not hold for Bregman divergences.

We will show that the problem of finding the smallest enclosing Bregman
ball as it was introduced in [31] is part of the family of distance functions that
we consider in this thesis and that Welzl’s algorithm can indeed be applied.

1.1.4 Smallest Enclosing Ball of Balls

In [29], Megiddo shows that the smallest enclosing ball for a set of balls
can be computed in linear time for fixed dimension though this is merely
a theoretical result. Fischer and Gärtner investigated this problem further,
showed in [13] that the smallest enclosing ball of balls problem is an LP-type
problem, and provided an implementation.

We will show that the problem of finding the smallest enclosing ball of
a set of balls belongs to the family of distance functions that we consider in
this thesis. This is not a surprise as we have gotten a substantial part of the
ideas used in this thesis from Fischer’s thesis.

1.1.5 Smallest Enclosing Cones

For a set of vectors, we define the smallest enclosing cone as the cone with
smallest angle that contains all vectors. This problem was first considered
by Lawson in [24] and he claimed that in R3, the smallest enclosing ball and
the smallest enclosing cone problem are equivalent though he did not provide
a proof. Barequet and Elber consider in [1] the problem in R3 and present a
solution that is using an embedding of the circle onto the surface of the unit
ball in R3.

For sets of vectors that lie in one hemisphere, we claim — using an as-
sumption — that the smallest enclosing cone is contained in the family of
distance functions that we consider in this thesis. Additionally, we will show
that the smallest enclosing cone problem can be efficiently reduced to the
smallest enclosing ball problem for point sets lying in one hemisphere. In
[24], Lawson claims this to be true in R3 though he does not provide a proof.

1.1.6 Superorthogonal Balls

In [12], Fischer introduces the concept of the smallest superorthogonal ball of
balls. Smallest superorthogonal balls are related to smallest enclosing balls
as they have either to contain the balls or intersect them so that the tangent
planes at every boundary intersection point span an outer angle of at least 90
degrees [12]. Fischer shows that the smallest superorthogonal ball is unique
and can be found efficiently. We will show that the problem of the smallest
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superorthogonal ball of balls is contained in the family of distance functions
that we are considering here.

1.1.7 ε-Core Sets and Approximation

The algorithms for the computation of the smallest enclosing ball that we
have mentioned so far compute the exact smallest enclosing ball. Instead
of the exact smallest enclosing ball, one might be interested in an enclosing
ball that is not much larger than the smallest enclosing ball. One might be
willing to accept this approximation because the computation of the exact
smallest enclosing ball is too slow for point sets in high dimensions.

For the smallest enclosing ball problem for point sets with L2 distance
functions, Bǎdoiu and Clarkson introduced in [4, 5] the concept of ε-core sets.
They show that a subset of d1

ε
e points is sufficient to produce an enclosing

ball with a radius that is enlarged by at most (1 + ε) compared with the
radius of the smallest enclosing ball.

The concept of ε-core sets has been applied to different settings. Nock
and Nielsen expanded in [32] the concept of ε-core sets to Bregman balls.
In [33], Panigrahy showed for convex polytopes of a fixed shape that can
be translated and scaled that the smallest enclosing convex polytope of the
given shape can be be approximated by an ε-core set. The same is shown
for a convex polytope of fixed shape that can be rotated and scaled. Har-
Peled and Varadarajan give in [18] an ε-core set algorithm for the problem of
smallest k-flat radii which contains the smallest enclosing cylinder problem.
In [38], Xie, Snoeyink, and Xu applied the concept of ε-core sets to finding
the maximum inscribed sphere in a polytope.

1.2 Terminology

Distance Function For a point p, we say that the distance between p and
x — as it is perceived by p — is denoted by dp(x) with dp : Rd → R.

SC Point Set Given a point set P ⊂ Rd. For a point p ∈ P , let

L(p, t) = {x ∈ Rd | dp(x) ≤ t}

be the level set defined by t. We say that L(p, t) is strictly convex if and
only if for all x, y ∈ Rd with x 6= y, λ ∈ (0, 1), dp(x) ≤ t, and dp(y) ≤ t :

dp(x) = dp(y) ⇒ dp((1− λ)x + λy) < (1− λ)dp(x) + λdp(y)

dp(x) 6= dp(y) ⇒ dp((1− λ)x + λy) < t.
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If L(p, t) is strictly convex for all p ∈ P and t ∈ R≥0, then we say that the
point set P is a SC point set.

Smallest Enclosing Ball Problem For a point set P ⊂ Rd, we say that
the smallest enclosing ball problem is defined as finding c and r that solve
the optimization problem

minimize r
subject to ∀p ∈ P : dp(c) ≤ r

c ∈ Rd.

Miniball We use miniball as a synonym for smallest enclosing ball.

MB(P) For a point set P , we denote the set of miniballs by MB(P ).

1.3 Acknowledgement

The author is in Bernd Gärtner’s debt. He guided to find the main roads,
encouraged to follow tiny and windy roads, and helped find a path out of
one-way streets.

The first part of this thesis follows Kaspar Fischer’s work and the author
is thankful for having had the possibility to use this work as a basis.

1.4 Outline

In Section 2, we define a class of distance functions that have strictly convex
level sets and that can be used to build SC point sets. In Section 3, we prove
four properties for SC point sets that we use in Section 4 where we show
that the miniball problem for SC point sets can be solved using the MSW
algorithm as it was presented in [34]. Additionally, we show that in general,
the miniball problem for SC point sets cannot be solved with the help of
Welzl’s miniball algorithm.

By the definition of SC point sets, every point has its own distance func-
tion. This is new as before — except for the smallest enclosing ball of balls
problem and the smallest superorthogonal ball of balls problem — only set-
tings have been considered that use the same distance function for all points
in the point set.

In Section 5, we analyze point sets with various distance functions. For
each distance function, we show that it has strictly convex level sets and how
to compute the smallest enclosing ball assuming that we know which points
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lie on the boundary of the miniball. In Section 6, we analyze two point sets
that are not SC point sets and show how to compute the miniball.

In Section 7, we analyze approximate solutions for the miniball problem.
First, we investigate point sets with L2 distance functions and show that there
is an optimal point so that removing this point produces a miniball that is
shrunk by only a constant factor. We argue that this is loosely coupled with
the idea of ε-core sets. For SC point sets in general, we show that there
is no optimal point so that removing this point produces a miniball that is
shrunk by only a constant factor and that there cannot be ε-core sets with a
size that is solely dependent on ε. Further, we show that for SC point sets,
removal of an optimal point produces a miniball with a decrease in size that
is dependent on the distance functions. This has no direct application but
we assume that this might be connected to the existence of core sets for SC
point sets that are dependent on ε and the distance functions. In a last part,
we present two core set algorithms and show for the first one that it is not
working for SC point sets and conjecture for the second one that it is working
for SC point sets.

1.5 Toy Application

In this section, we describe a toy application that can help to explain the
setting considered in this thesis to Jane and John Doe.

Three friends are on vacation close to a lake. Adam loves swimming,
Beth prefers to take a pedalo, and Caroline is in possession of a rowing boat.
The three friends leave shore in different places and move for a while away
from the shore. As being out on the lake on your own is not as much fun as
being together out on a lake, Adam, Beth, and Caroline are looking for the
spot on the lake where they can meet as soon as possible. Unfortunately,
the three friends move forward at different speed. Adam is swimming a lot
slower than Beth is moving forward in her pedalo, and Caroline with her
rowing boat is a lot faster than Beth is.

In Figure 1, we see the positions of Adam, Beth, and Caroline. Ad-
ditionally, we sketched with circles the distance that each of the three can
move forward in 10, 20, and 26.5 minutes. As Adam is moving forward the
slowest, his circles are the smallest. From Figure 1, it is immediately obvious
that the friends should move towards c to meet as fast as possible. This is
obvious because c is the only spot on the lake that can be reached by all
three friends in at most 26.5 minutes.

It might be possible to find c with a trial and error method. But notice
that for Adam dA(x) = ‖A − x‖, for Beth dB(x) = 1.3‖B − x‖, and for
Caroline dC(x) = 1.6‖C − x‖ whereas only the differences in speed among
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A

B

C

10′20′26.5′

10′ 20′ 26.5′

10′ 20′ 26.5′

c

500m

Figure 1: The position of the three friends Adam, Beth, and Caroline. The
circles denote the distance that the friends can move forward in 10, 20, re-
spectively 26.5 minutes. In order to meet each other as fast as possible, all
friends have to move towards c.
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Adam, Beth, and Caroline are important. It is easy to see that the level sets
L(A, t), L(B, t), and L(C, t) are strictly convex and therefore it is the setting
that we consider in this thesis. Finding the point c can then be formulated
as

minimize r
subject to ∀p ∈ {A, B, C} : dp(c) ≤ r

c ∈ R2

and we can conclude that finding the spot on the lake so that the three can
meet as soon as possible is a miniball problem. c is the spot where they will
meet and with the help of r, the time until the meeting takes place can be
determined.

Notice that we could alter the model of how the friends move forward. We
could say that Adam is swimming faster in directions similar to the direction
of the current and slower in directions against the current. As long as the
level set of spots that can be reached by Adam in — say — 10 minutes is
strictly convex, the problem of the three friends meeting is still part of the
miniball problem that we consider in this thesis. Have a look at Figure 2 for
a sketch of such a situation.
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A

B

C

10′

20′

30′31.5′

10′ 20′ 30′ 31.5′

10′ 20′ 30′ 31.5′

c

500m current

Figure 2: The three friends Adam, Beth, and Caroline are at the same
positions as in Figure 1 though Adam is moving forward faster in directions
aligned with the current and slower in opposite directions. The circles denote
the distance that the friends can move forward in 10, 20, 30, respectively 31.5
minutes. To meet as fast as possible, the friends have to move towards c.
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2 Setting

Let P ⊂ Rd be a finite nonempty point set with every point having its own
distance function. For a point p ∈ P , we say that dp(c) is the distance
between p and c as perceived by p.

Definition 2.1. A point p is contained in a ball with center c and radius r
if and only if dp(c) ≤ r holds.

Notice that the ball in Definition 2.1 does not have to be a geometrical
ball. The smallest enclosing ball problem for a point set P in this setting is
defined as finding c and r that solve the optimization problem

minimize r
subject to ∀p ∈ P : dp(c) ≤ r

c ∈ Rd.

The properties of the miniball MB(P ) are dependent on the involved distance
functions. We consider SC point sets as introduced in Section 1.2; let us
repeat the definition of SC point sets. For all points p ∈ P , let

L(p, t) = {x ∈ Rd | dp(x) ≤ t}

be the level set defined by t. We say that L(p, t) is strictly convex if and
only if for all x, y ∈ Rd with x 6= y, λ ∈ (0, 1), dp(x) ≤ t, and dp(y) ≤ t:

dp(x) = dp(y) ⇒ dp((1− λ)x + λy) < (1− λ)dp(x) + λdp(y)

dp(x) 6= dp(y) ⇒ dp((1− λ)x + λy) < t;

consult [11] for a motivation of this definition. A point set P is an SC point
set if and only if the level sets of all points are strictly convex for t ∈ R≥0.
We will see that having an SC point set P allows us to show nice properties
for MB(P ).

Obviously, strictly convex distance functions fulfilling

dp((1− λ)x + λy) < (1− λ)dp(x) + λdp(y)

have strictly convex level sets. Let us consider point sets P ⊂ Rd so that all
distance functions dp(c) are strictly quasi-convex. According to [8], a function
dp has to fulfill

∀x, y ∈ Rd, x 6= y, ∀λ ∈ (0, 1) : dp((1− λ)x + λy) < max{dp(x), dp(y)}

to be strictly quasi-convex. Notice that this definition of strict quasi-convexity
might be different from definitions found elsewhere; e.g. in [21].

The lemma following next proves that the level set L(p, t) for strictly
quasi-convex distance functions is strictly convex.
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Lemma 2.2. Given a level set L(p, t) = {x ∈ Rd |dp(x) ≤ t}. If the distance
function dp(x) is strictly quasi-convex for all x ∈ Rd, then the level set L(p, t)
is strictly convex.

Proof. To prove that L(p, t) is strictly convex, we have to show that for two
points x 6= y with dp(x) ≤ t and dp(y) ≤ t and λ ∈ (0, 1),

(i) dp((1− λ)x + λy) < t holds for x and y with dp(x) 6= dp(y).

(ii) dp((1 − λ)x + λy) < (1 − λ)dp(x) + λdp(y) holds for x and y with
dp(x) = dp(y) (strict convexity).

Let us first show (i). We can use the strict quasi-convexity and our
preconditions to get

λ ∈ (0, 1) : dp((1− λ)x + λy) < max{dp(x), dp(y)} ≤ t.

To prove (ii), we have to show that

∀λ ∈ (0, 1) : dp((1− λ)x + λy) < (1− λ)dp(x) + λdp(y).

Using the definition of strict quasi-convexity and the knowledge that both x
and y have the same distance from p, we get

∀λ ∈ (0, 1) : dp((1− λ)x + λy) < max{dp(x), dp(y)}
= (1− λ)dp(x) + λdp(y)

and this proves the strict convexity of the level set L(p, t).

We have shown that for t ∈ R≥0, the level set L(p, t) is strictly convex
for the classes of strictly convex and strictly quasi-convex distance functions
dp(x).

14



3 Properties of Miniball

In this section, we explore properties of the miniball for SC point sets.

3.1 Existence

First, we look at the existence of the miniball for SC point sets.

Lemma 3.1. Given a finite nonempty point set P so that L(p, t) is a strictly
convex object for all p ∈ P and t ∈ R≥0. Then there exists a t with

t ≤ max
p,q∈P

{dp(q)} < ∞

so that the intersection
⋂

p∈P L(p, t) is nonempty. Further, there exists an
enclosing ball with smallest radius.

Proof. By the definition of dp(c) as given in Section 1.2, dp(q) < ∞ for all
p, q ∈ P . It follows that the maximum distance t between any two points in
P is smaller than ∞.

Assume that p, q ∈ P maximize dp(q). Let t = dp(q) and therefore L(p, t)
contains q on its boundary and all q′ ∈ P are contained in L(p, t). Notice
that P ⊆ L(p′, t) for all p′ ∈ P as otherwise we would have chosen p and q
differently. It follows that P ⊆ C(t) =

⋂
p∈P L(p, t) and therefore there is a

nonempty intersection.
As long as the intersection C(t) is nonempty, we can find a point c ∈ C(t)

so that the ball B(c, t) = {p ∈ P | dp(c) ≤ t} with center c and radius t
contains all points in P . The existence of a ball with smallest radius can be
proved by decreasing t as long as C(t) 6= ∅. Assume that t′ is the smallest
value so that C(s) 6= ∅ for all t′ ≤ s ≤ t and C(t′ − ε) = ∅ for ε > 0. There
has to be such a t′ because L(p, t) is a closed set for all p ∈ P and therefore
C(t) 6= ∅ is as well a closed set. By the convexity of L(p, t) and the fact that
for s′ < s, L(p, s′) ⊆ L(p, s), we can conclude that there cannot be an s < t′

with C(s) 6= ∅.

3.2 Uniqueness

With Lemma 3.1, we know that there exists a smallest enclosing ball MB(P )
with center c and radius r. Assume that we are given such a miniball. As we
have already seen in the proof of Lemma 3.1, for every point p ∈ P , the center
c has to be contained in the level set L(p, r); equivalently, c ∈

⋂
p∈P L(p, r).

We use this to prove uniqueness.
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Lemma 3.2. Given a finite nonempty set of points P so that L(p, t) is a
strictly convex object for all p ∈ P and t ∈ R≥0. Then there is a unique
smallest enclosing ball for the point set P .

Proof. With Lemma 3.1, we know that there is a smallest enclosing ball with
radius r. If r = 0, uniqueness is trivial and we assume that r 6= 0. Further
assume that there are at least two smallest enclosing balls with radius r and
centers c0 6= c1.

We know that dp(c0) ≤ r and dp(c1) ≤ r has to hold for all p ∈ P . Let us
distinguish two cases dependent on p:

i. If dp(c0) = dp(c1), we know by strict convexity of L(p, r) that for all
λ ∈ (0, 1), z = (1−λ)c0 +λc1 and dp(z) < dp(c0) holds. With dp(c0) ≤ r,
we can conclude that dp(z) < r.

p

c0

c1

L(p, dp(c0))
z

ii. If dp(c0) 6= dp(c1), we assume w.l.o.g. that dp(c0) < dp(c1). With dp(c1) ≤
r, dp(c0) < dp(c1) ≤ r follows. L(p, t) is a strictly convex object for all
t ∈ R≥0 and it follows that c0 lies inside L(p, dp(c1)). Further, we can
find the point e 6= c1 that lies on the line defined by c0 and c1 and that
has dp(e) = dp(c1). Due to the strict convexity of L(p, dp(c1)) we know
that for z = (1 − λ)c0 + λc1 = (1 − µ)e + µc1 for µ ∈ (0, 1), we have
dp(z) < dp(c1) ≤ r.

p e

c1

c0

z

It follows that we can find a point z so that for every p ∈ P , dp(z) < r.
This is a contradiction to our assumption that the smallest enclosing ball has
radius r and it follows that the smallest enclosing ball is unique.
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3.3 Combinatorial Dimension

In the context of combinatorial dimension, we prove two properties. The first
property states that if a point p ∈ P is properly contained in the smallest
enclosing ball, then

MB(P ) = MB(P \ {p}).

The second property gives us an upper bound on the number of points that
define the smallest enclosing ball and this property is called combinatorial
dimension.

Lemma 3.3. If a point p ∈ P is properly contained in the smallest enclosing
ball MB(P ), then MB(P ) = MB(P \ {p}).

Proof. For a point p ∈ P that is properly contained in MB(P ) with center
c and radius r, dp(c) < r holds by definition. It follows that c is prop-
erly contained in L(p, r). By the uniqueness of MB(P ), we know that
C(r) =

⋂
p∈P L(p, r) contains only c and we can conclude that C(r) is prop-

erly contained L(p, r).
Because C(r) is properly contained in L(p, r), it is not possible that L(p, r)

defines part of the boundary of C(r). Further, the intersection of strictly
convex objects is again a strictly convex object; e.g. it is not possible that
two disconnected objects are contained in C(r). Notice that for level sets that
are not strictly convex, it is possible that C(r) contains multiple disconnected
regions and removing the point p properly contained in MB(P ) might alter
C(r). It follows that removing the point p does not change the intersection
C ′(r) =

⋂
p′∈P\{p} L(p′, r); C(r) = C ′(r) holds and the center of the miniball

has to be the same after removal of p. Because dp(c) < r, there has to be a
q 6= p with dq(c) = r and we can conclude that the radius remains as well
the same.

Lemma 3.4. Let P ⊂ Rd be a set of at least d + 1 points. There exists a
subset P ′ ⊆ P with |P ′| = d + 1 points fulfilling MB(P ′) = MB(P ).

Proof. Given a point set P with smallest enclosing ball MB(P ). The smallest
enclosing ball has center c and radius r. We know that

{c} = C(r) =
⋂
p∈P

L(p, r)

by Lemmata 3.1 and 3.2. It follows that

C ′(r) =
⋂
p∈P

int (L(p, r)) =
⋂
p∈P

{x ∈ Rd | dp(x) < t} = ∅.

17



To conclude our proof, we make use of Helly’s theorem [9]. Given convex
sets Si ⊂ Rd with i ∈ [m] and m > d + 1. If for all possible J ⊂ [m] with
|J | = d + 1,

⋂
j∈J Sj 6= ∅ holds, then

⋂
i∈[m] Si 6= ∅ follows.

As
⋂

p∈P int (L(p, r)) = ∅, we can conclude with Helly’s theorem that
there is a set P ′ with |P ′| = d + 1 so that

⋂
p∈P ′ int (L(p, r)) = ∅. It follows

that it is not possible that there is a ball with radius r′ < r that encloses
all points in P ′ and combining this with P ′ ⊂ P , we know that MB(P ) and
MB(P ′) have to have the same radius. By uniqueness for the set P ′, we can
argue that MB(P ′) = MB(P ).

Lemmata 3.3 and 3.4 push us towards the concept of a basis ; let us
introduce this concept formally.

Definition 3.5. Given a point set P , we call V ⊆ P a basis of P if and only if
MB(V ) = MB(P ) and there is no point set V ′ ⊆ P with MB(V ′) = MB(P )
and |V ′| < |V |. Notice that it is possible to have more than one basis and
that the size of the basis can be smaller than d + 1.

3.4 Miniball Problem is an LP-Type Problem

The generic algorithm presented in the next section will make use of the
fact that the smallest enclosing ball problem for SC point sets is an LP-type
problem as it was introduced by Sharir and Welzl in [34].

Definition 3.6. (Adaption from [34]) Let H be a set of constraints and
ω be a function mapping every subset G of H to its optimal solution with

ω : 2H → Ω

whereas Ω is a set with linear order <. We call (H, ω) an LP-type problem
if the two conditions

1. F ⊆ G ⊆ H implies ω(F ) ≤ ω(G).

2. F ⊆ G ⊆ H, ω(F ) = ω(G), h ∈ H implies ω(F + h) > ω(F ) ⇔
ω(G + h) > ω(G)

are fulfilled.

Let us show that the miniball problem for SC point sets is indeed an
LP-type problem.

Lemma 3.7. Let P ⊂ Rd be a finite nonempty SC point set and define
w : 2P → R to be the radius of the smallest enclosing ball; e.g. for N ⊆ P ,
ω(N) is the radius of MB(N). (P, ω) is an LP-type problem with maximum
combinatorial dimension d + 1.
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Proof. As ω(N) is the radius of MB(N) for an N ⊆ P , the set Ω as pre-
sented in Definition 3.6 has linear order and we are left to show that the two
conditions from Definition 3.6 hold.

For the first condition, we assume that for N ⊆ O ⊆ P , ω(N) ≤ ω(O)
does not hold and show a contradiction. As ω(N) is the radius of MB(N)
respectively ω(O) the radius of MB(O), it follows that MB(N) has to have
a larger radius than MB(O). This is not possible because N is contained in
O and therefore as well in MB(O); a contradiction.

For the second condition, we observe that if N = O, then locality is
trivial and we assume that N ⊂ O. With ω(N) = ω(O), N ⊂ O, and
uniqueness of the miniball for N , we know that MB(N) and MB(O) are
the same miniballs. With MB(N) and MB(O) being the same miniballs,
locality follows trivially.

With Lemma 3.4, an upper bound of d+1 on the combinatorial dimension
follows immediately.

In the next section, we use the fact that the miniball problem for SC
point sets is an LP-type problem.
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4 Algorithms

With the help of the properties that we have shown in the last section, we
present an algorithm that solves the miniball problem for SC point sets.

First, we present Welzl’s algorithm for the miniball problem with points
in the Euclidean setting [37] and show why this algorithm cannot be applied
to our setting. In a second part, we show that the miniball problem for SC
point sets can be solved with the MSW algorithm as described in [34].

4.1 Welzl’s Miniball Algorithm

Given a point set P with p ∈ P having the distance function

dp(x) = ‖p− x‖2,

Welzl presents in [37] an algorithm to solve the smallest enclosing ball prob-
lem. He uses a lemma to show the correctness of the algorithm; we list here
the first part of this lemma.

Lemma 4.1. (Adaption of Lemma 1 from [37]) Let P and R be finite
point sets in the plane and P nonempty. Assume that b md(P, R) is the ball
of smallest radius that contains all points in P and that has all points in R
on the boundary. If there exists a disk containing P with R on its boundary,
then b md(P, R) is well-defined (unique).

Based on Lemma 4.1, Welzl shows that Algorithm 1 solves the smallest
enclosing ball problem.

procedure seb(U, V )
begin

if U = V then
return any ball from the set MB(V, V )

else
choose B ∈ U \ V uniformly at random
D = seb(U \ {B}, V )
if B * D then

return seb(U, V ∪ {B})
else

return D
end

end
end

Algorithm 1: Welzl’s miniball algorithm
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We show that there is an SC point set that does not fulfill the uniqueness
property as given in Lemma 4.1. Given a set of points P with

dp(x) = sp‖p− x‖2

for all p ∈ P and for a scale factor sp ∈ R≥0. Every level set L(p, t) is clearly
a ball and strict convexity follows2.

Assume that R = P ⊂ R2 and |P | = 3. Further assume that the points
in P lie on a common line l and that the scale factors sp are not yet defined.
Let us choose a center c0 strictly on one side of the line l. Because the points
lie on the boundary of the miniball, we know that

∀p ∈ P : dp(c) = r

for a radius r. We choose r > 0 arbitrarily and with this choice, the scale
factors sp for all p ∈ P are determined. But now, due to symmetry, we can
find a miniball with center c1 6= c0 by reflecting c0 at the line l so that all
points in P are on the boundary of this new miniball.

l

str
sur

svr

str
sur

svr

t u v

c0

c1

Figure 3: Example of a point set P = {t, u, v} that is lying on the boundary
of two smallest enclosing balls with centers c0 6= c1.

We have shown that the miniball for a set P having a set R ⊆ P on its
boundary is not unique though this does not directly imply that Algorithm
1 is not working.

In [12], Fischer presents an example for the smallest enclosing ball of
balls problem showing that Welzl’s algorithm is not working. The smallest
enclosing ball of balls problem is contained in the smallest enclosing ball
of SC point set problem3 and it follows that in general, Welzl’s algorithm
cannot be applied to SC point sets.

2a proof is provided in Section 5.2
3a proof is provided in Section 5.4
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4.2 MSW

In [34], Sharir and Welzl present a generic algorithm that solves LP-type
problems given the implementation of two primitive operations. In Lemma
3.7, we have shown that the miniball problem for SC point sets is an LP-type
problem. The MSW algorithm introduced in [27] is given as Algorithm 2.

procedure msw(U, V )
// Computes a basis of U
// Precondition: V ⊆ U is a basis

begin
if U = V then

return V
else

choose x ∈ U \ V uniformly at random
W = msw(U \ {x}, V )
if violates(x, W ) then

return msw(U, basis(W, x))
else

return W
end

end
end

Algorithm 2: MSW to solve LP-type problems

The MSW algorithm (Algorithm 2) and the miniball algorithm (Algo-
rithm 1) have a pretty similar structure. The difference between the two
algorithms is that the MSW algorithm uses operations basis and violates
whereas the miniball algorithm uses properties of the physical ball directly.
The two operations are defined as follows:

• violates: For a basis V ⊆ U ⊆ P and a constraint x ∈ U \ V ,
violates(x, V ) returns yes if and only if x makes it impossible for V to
be a basis of V ∪ {x}.

• basis: For a basis V ⊆ U ⊆ P and a constraint x ∈ U \ V , basis(V, x)
returns a basis of the point set V ∪ {x}.

Let us give possible implementations for the two operations.

Violates The implementation of violates depends on the distance functions
dp(c) for the points p ∈ P . To test whether a point lies inside or outside a
miniball, we have at least two possibilities:
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1. For a basis V with |V | ≤ d + 1, compute the miniball. The center c
and the radius r are determined by the system of equations

∀p ∈ V : dp(c) = r. (1)

This system of equations is correct because all points of a basis lie on
the boundary of the miniball. If V is a basis, then there has to be a
miniball and this miniball has to be unique. It follows that the system
of equations has a solution c ∈ Rd that minimizes r ∈ R≥0 and that this
solution is unique. The difficulty of solving the System of Equations
1 depends on the distance functions dp(c). Given c, r, and the dp’s,
it is easy to test whether a point q lies inside (dq(c) ≤ r) or outside
(dq(c) > r) the miniball. Notice that the test whether a point lies inside
or outside the ball might not be obvious to do in rational arithmetic.

2. Use geometric properties of the miniball and its basis. This approach
is taken in [16] where the test for containment in an ellipse is carried
out in rational arithmetic even though the center point of the ellipse
can be irrational.

Basis Assuming that there is an implementation for violates, Fischer shows
in [12] that basis can be computed:

Lemma 3.3 states that if a point x is properly contained in MB(V ), then
MB(V ) = MB(V \ {x}). In the basis computation, we are given a basis W
and a point x that is not contained in the miniball defined by this basis; this
can be formulated as MB(W ∪{x}) 6= MB(W ). With Lemma 3.3, it follows
that x lies on the boundary of the miniball MB(W ∪ {x}). We can employ
this property and construct the basis for a point set W ∪{x} in a brute-force
manner:

Recalling Definition 3.5, a basis of P has to be a set of points V ⊆ P of
minimum size so that MB(V ) = MB(P ). Using the property of minimum
size, we can generate all point sets V ′ ⊆ W according to their size. Starting
with a set V ′ with smallest size, we test whether V = V ′ ∪ {x} is a basis of
W ∪ {x}; if we are given an implementation of the violates operation, this
test is easy. The first point set V that has MB(V ) = MB(W ∪ {x}) is a
basis because we generate the point sets V in increasing size.

It is important to notice that this implementation is brute-force and it
might be possible to find better implementations for specific instances of the
problem. In [12], Fischer does so for the case of the smallest enclosing ball
of balls.
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5 SC Point Sets and the Miniball for a Given

Basis

After having presented the properties of SC point sets and an algorithm
that allows us to compute the miniball for SC point sets, we present specific
instances of distance functions. We show that the distance functions have
strictly convex level sets L(p, t) and elaborate on how to compute the mini-
ball for a given basis of the point set. With the help of the miniball, the
implementation of the violates operation follows immediately.

t u

v

Figure 4: Miniball for points t, u, and v having distance functions dt(x) =
‖t−x‖

2
, du(x) = ‖u − x‖, and dv(x) =

√
|v0−x0|2

2
+ |v1−x1|2

1
. The thick lines

illustrate the intersection of the level sets defining the miniball.

Notice that in the work presented so far, we have not been assuming
that the points in P use the same distance functions. As long as all points
in P use a distance function with strictly convex level sets, we can apply
algorithm MSW — based on the condition that we can implement the violates
operation. Further, we have not made any conditions on the distribution of
the distance functions among the points; it is not required that nearby points
in P use similar distance functions. For an illustration of a miniball for a
point set with different distance functions, have a look at Figure 4.

5.1 Points with Lp (1 < p < ∞) Distance Functions

For 1 < p < ∞, we consider points q ∈ P with distance functions

dq(c) = ‖c− q‖p := p

√∑
|ci − qi|p.

We show that ‖c − q‖p is a distance measure with strictly convex level sets
and then hint at how to implement the violates operation.
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Strict Convexity of Level Sets

We show strict convexity of the level sets for Lp distance functions with
1 < p < ∞.

Lemma 5.1. The distance function dq(x) = ‖x − q‖p with 1 < p < ∞ has
strictly convex level sets.

Proof. We show that the distance function dq(x) = ‖x − q‖p is a strictly
quasi-convex distance function. With Lemma 2.2, this implies that the level
set is strictly convex. A distance function dq(x) is strictly quasi-convex if

∀x, y ∈ Rd, x 6= y, ∀λ ∈ (0, 1) : dq((1− λ)x + λy) < max{dq(x), dq(y)}

holds. From the definition of dq(x), it follows that dq(x) = dq−y(x − y)
and we can therefore translate our point set so that q = 0. By definition
of d0(x) = p

√∑
|xi|p, we can conclude that ad0(x) = d0(ax) and therefore

assume that
x, y ∈ U = {z ∈ Rd | ‖z‖p ≤ 1}.

The condition for strict quasi-convexity can then be reformulated as

∀λ ∈ (0, 1), x, y ∈ U : ‖(1− λ)x + λy‖p < max{‖x‖p, ‖y‖p}.

Assume that x, y ∈ U , x 6= y, and as we can scale, we can assume that
‖x‖p = 1 and ‖y‖p ≤ 1. We remind ourselves of the definition of the Lp norm

‖(1− λ)x + λy‖p = p

√∑
|(1− λ)xi + λyi|p.

If we could show that for at least one i

|(1− λ)xi + λyi|p < (1− λ)|xi|p + λ|yi|p

and that for all other i’s

|(1− λ)xi + λyi|p ≤ (1− λ)|xi|p + λ|yi|p

holds, then we could conclude that

‖(1− λ)x + λy‖p = p

√∑
|(1− λ)xi + λyi|p

< p

√
(1− λ)

∑
|xi|p + λ

∑
|yi|p

= p
√

(1− λ)‖x‖p
p + λ‖y‖p

p

≤1

=‖x‖p

= max{‖x‖p, ‖y‖p}
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and we had shown that dq(x) is a strictly quasi-convex distance function and
that therefore the level sets of dq(x) are strictly convex.

All there is to do is to prove the strict convexity of |x|p. To do so, divide
the problems into subproblems that are dependent on the values of x and y.

First assume that x 6= y, x > 0, and y > 0. For any point

λ ∈ (0, 1) : l(λ) = (1− λ)x + λy,

z = l(λ) is strictly positive. So for a strictly positive z, |z|p = zp and
differentiating this twice yields (p−1)pzp−2. Because we were assuming that
p > 1, (p − 1)pzp−2 is strictly positive for z ∈ (0,∞) and we can therefore
conclude that the function |z|p is strictly convex for z ∈ (0,∞) [36]. It follows
that |(1− λ)x + λy|p < (1− λ)|x|p + λ|y|p holds for x, y ∈ R>0.

For x 6= y, x < 0, and y < 0 we can argue in the same way. |z|p = (−z)p

and the second derivative is (p− 1)p(−z)p−2 which is again strictly positive
assuming p > 1. We can conclude that strict convexity |(1 − λ)x + λy|p <
(1− λ)|x|p + λ|y|p holds for x, y ∈ R<0 [36].

Next, let us look at the situation with x = 0 and y 6= 0. We have

|(1− λ)x + λy|p = |λy|p = λp|y|p.

By our definition p > 1, λ ∈ (0, 1) whereas it follows that

λp|y|p < λ|y|p

holds. We can conclude that strict convexity holds as well in this case.
In a last step, let us have a look at the case with x < 0 and y > 0.

Notice that this case cannot be directly reduced to the previous ones as
the function |z|p is not differentiable in the interval (−∞,∞). If λ so that
(1 − λ)x + λy = 0, then |(1 − λ)x + λy|p = |0|p and this is trivially strictly
smaller than (1− λ)|x|p + λ|y|p; strict convexity is shown for this case.

If λ so that (1−λ)x+λy 6= 0, then we first assume that (1−λ)x+λy > 0.
Further assume that a = (1 − λ)x + λy and therefore for a µ with a =
(1− µ)0 + µy, we have

µ− λ =
a

y
− a− x

y − x
=

x(y − a)

y(y − x)
.

By our choices, we know that y − a > 0, y > 0, y − x > 0, and x < 0.
It follows that our expression is strictly negative and we can conclude that
µ− λ < 0 or equivalently µ < λ. With this, we can conclude that

|(1− λ)x + λy|p = |µy|p < µ|y|p < λ|y|p ≤ (1− λ)|x|p + λ|y|p
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ax y

λ

µ

Figure 5: Strict convexity for x < 0, y > 0, and a > 0. λ and µ denote the
points (a, (1− λ)|x|p + λ|y|p) resp. (a, λ|y|p).

and strict convexity is as well proven for this case. (1 − λ)x + λy < 0 is
handled analogously and we can conclude that for all combinations of x 6= y,
and λ ∈ (0, 1) we have

|(1− λ)x + λy|p < (1− λ)|x|p + λ|y|p

and strict convexity holds.
Obviously, strict convexity holds only for x 6= y. By our assumption that

x′ 6= y′ for x′, y′ ∈ Rd, we know that there are x 6= y and it follows that strict
convexity holds for at least one x and y. For x = y,

|(1− λ)x + λy|p = |x|p = (1− λ)|x|p + λ|y|p

and this concludes our proof for the strict convexity of the level sets of dq(x) =
‖x− q‖p.

Violates Operation

The implementation of the violates operation is dependent on the distance
function Lp. L2 is the traditional miniball problem as described in [37] and
we do not have to bother about implementation of the violates operation. For
all other instances of Lp, computing the center and the radius of a small basis
boils down to solving a system of equations. Solving the system of equations
can be done using methods such as [25] though this might be expensive.

5.2 Points with Scaled L2 Distance Functions

In the instance considered so far, all points had the same distance function.
In the setting considered here, the distance functions of the points have the
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same form but differ from each other in a parameter that is dependent on
the point; the distance function

dp(c) =
‖p− c‖2

sp

is dependent on a scale factor sp > 0. The property of strict convexity is
invariant under scaling and we can conclude that the scaled version of L2 fits
into the framework of SC point sets.

Violates Operation

To show how to implement the violates operation, we have to prove a few
properties that hold for the instance at hand but do not hold in the general
case. We follow closely Fischer’s strategy for the smallest enclosing ball of
balls problem.

We prove the first lemma for a general type of distance functions dp(c)
that contains the scaled version considered here. While proving this lemma,
we will see that we can use the exact same proof strategy as in [12]. Notice
that we were not able to find a reduction of the setting of scaled L2 distance
functions to the setting of finding the smallest enclosing ball of balls.

Lemma 5.2. (Adaption of Lemma 3.3 from [12]) Assume that fp(x)
is a strictly increasing function; x, y ∈ R≥0 : x < y ⇒ fp(x) < fp(y). Let V
be a nonempty set of points with distance function dp(c) = fp(‖p − c‖2) —
meaning that all level sets L(p, t) are balls — and D a ball that contains all
points in V on its boundary. Then D = MB(V ) if and only if the center cD

of D is contained in the convex hull of V .

Proof. Let us first tackle direction (⇐) by assuming that D 6= MB(V ).
Say that MB(V ) has center cD′ and radius rD′ . By uniqueness of MB(V ),
this implies that rD′ < rD and by the assumption that all points lie on the
boundary of D, cD′ 6= cD follows. Let us write cD′ = cD + λu for λ > 0 and
for an arbitrary unit vector u. By δp, let us denote the distance between cD′

and p ∈ V . We can write

δp = fp (‖cD′ − p‖2) = fp

(√
‖cD − p‖2

2 + λ2 − 2λ(p− cD)T u

)
and because all points p ∈ V have to be contained in the enclosing ball D′,
we know that

rD′ ≥ max
p∈V

δp.
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Seidel’s observation states that a point q ∈ Rd lies in the convex hull
conv(V ) of a finite point set V ⊂ Rd if and only if minp∈V (p− q)T u ≤ 0 for
all unit vectors u [12]. From this observation, we know that for the u that
we have chosen to define cD′ = cD +λu, there is a p′ so that (p′− cD)T u ≤ 0.
For this p′, we have

δp′ = fp′

(√
‖cD − p′‖2 + λ2 − 2λ(p′ − cD)T u

)
with

λ2 − 2λ(p′ − cD)T u > 0.

We know that rD = fp′ (‖cD − p′‖2) and can therefore conclude that δp′ > rD.
Putting the bits and pieces together we get

rD′ ≥ max
p∈V

δp ≥ δp′ > rD

contradicting our initial assumption rD′ < rD.
For direction (⇒), we assume that cD is not contained in conv(V ). By

Seidel’s observation, we know that there is a u so that

∀p ∈ V : (p− cD)T u > 0.

With the help of that u, construct a cD′ = cD + λu with

0 < λ < 2 min
p∈V

(p− cD)T u.

We can rewrite

δp = fp

(√
‖cD − p‖2 + λ(λ− 2(p− cD)T u)

)
and know that

∀p ∈ V : λ(λ− 2(p− cD)T u) < 0

whereas we can follow that

∀p ∈ V : δp < rD.

We can conclude that there is a scaled disk with center cD′ and radius rD′ =
maxp∈V δp < rD enclosing all points p ∈ V ; a contradiction to the assumption
that D = MB(V ).

It is trivial to see that the function fp(x) = x
sp

is a strictly increasing

function and therefore Lemma 5.2 can be applied to the scaled setting. Notice
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that the functions t ∈ R≥1 : fp(x) = xt, fp(x) = x
sp

+rp, and t ∈ R>1 : fp(x) =

tx are strictly increasing and therefore Lemma 5.2 applies as well to them.
We use the fact that the center of the miniball MB(V ) has to be contained

in the convex sets of the basis V to prove that the points p ∈ V are affinely
independent. The proof of the next lemma is equivalent to the one given in
[12], we restate it here for convenience.

Lemma 5.3. (Adaption of Lemma 3.8 from [12]) For a point set
P with points having distance functions dp(c) = fp (‖p− c‖2) for a strictly
increasing function fp, the centers of a basis V ⊆ P are affinely independent.

Proof. In [12], Fischer uses the fact that in his setting, the center of the
miniball lies in the convex hull of the basis points; by Lemma 5.2, the exact
same is true for our setting.

If P = ∅, then the claim is trivially true and we assume that P 6= ∅
and therefore as well V 6= ∅ and with Lemma 5.2, the center c of a miniball
MB(V ) can be written as c =

∑
λipi for V = {p1, ..., pm}. By definition, a

basis is minimal and we can conclude that ∀i : λi > 0.
Assume that the centers are affinely dependent, meaning that there are

µi so that ∑
µipi = 0,

∑
µi = 0.

Using this, we rewrite c as

c =
∑

λipi + α
∑

µipi =
∑

(λi + αµi)pi.

Set α = 0 and increase it until for the first time the equality λi + αµi = 0 is
fulfilled for some i. Because pi is the first point that fulfills that condition, it
follows that all other p ∈ V \{pi} have a factor λi+αµi ≥ 0. By construction,∑

(λi + αµi) = 1; a contradiction to the assumption that V is a basis and
therefore minimal.

We use this proof to show that there is a fast and exact way of computing
MB(V ) for a basis V of P .

Lemma 5.4. (Adaption of Lemma 5.2 from [12]) Let V ⊆ P be sets

of points with distance function dp(c) = ‖p−c‖2
sp

and assume that V is a basis

of P . With MB(V, V ), let us denote the set of miniballs of the point set V
that contains V on its boundary. Then MB(V, V ) = MB(P ) and MB(P )
can be computed in time 0(d3).

Proof. We have to show two things:

(i) MB(V, V ) = MB(P ) for a basis V ⊆ P of a point set P
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(ii) MB(P ) can be computed in time O(d3).

V = ∅ implies that P = ∅ and we can conclude that MB(∅) is the empty
ball − ./. MB(∅, ∅) = MB(∅) holds trivially and the computation of the
empty ball − ./ is clearly possible in O(d3).

Assume that V 6= ∅ and let us first show (i). V is a basis of P and
MB(V ) = MB(P ) has to hold. With Lemma 3.3, all p ∈ V lie on the
boundary of MB(P ) and MB(V ) ∈ MB(V, V ). All balls in MB(V, V ) are
smallest enclosing balls and have the same radius. With Lemma 3.2, we
know that this smallest enclosing ball is unique and therefore MB(V ) =
MB(V, V ).

To show (ii), we assume that V = {p1, ..., pm} for m ≤ d + 1. The ball
MB(V, V ) has center c and radius r if and only if r ≥ 0, ‖c − pi‖2

2 = r2s2
pi

for all i, and we have chosen the smallest r fulfilling these conditions. Define
z = c−p1 and for 1 < i ≤ m, zpi

= pi−p1. We can reformulate the conditions
for c and r as

zT z = r2s2
p1

(2)

(zpi
− z)T (zpi

− z) = r2s2
pi
, i ∈ [m] \ {1}.

Subtracting the former from the later gives us m− 1 linear equations in z of
the form

zT
pi
zpi
− 2zT zpi

= r2(s2
pi
− s2

p1
), i ∈ [m] \ {1}. (3)

Lemma 5.2 states that for the miniball MB(V, V ) with center c and radius
r, c =

∑
λipi with

∑
λi = 1 holds for some λi. This can be used to write

z = c− p1 =
m∑

i=1

λipi − p1 =
m∑

i=2

λipi −
m∑

i=2

λip1 =
m∑

i=2

λi(pi − p1) = Qλ

with Q = (zp2 , ..., zpm) and λ = (λ2, ..., λm). Using this notation, we rewrite
Equation 3 as

2zT
pi
Qλ = zT

pi
zpi

+ r2(s2
p1
− s2

pi
), i ∈ [m] \ {1} (4)

and conclude that this is a linear system of the form Aλ = e + r2f with
A = 2QT Q.

With Lemma 5.3, we know that the points pi for i ∈ [m] are affinely
independent and this implies that zpi

= pi − p1 are linearly independent.
Assume not and that zpi

are not linearly independent. Then this implies
that there are ai so that

m∑
i=2

aizpi
=

m∑
i=2

aipi −
m∑

i=2

aip1 = 0
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and
∑

ai−
∑

ai = 0 lets us conclude that the points pi are affinely dependent;
a contradiction and we can conclude that the columns of Q are linearly
independent.

QT Q is regular if the columns of Q are linearly independent. This holds
because if QT Qx = 0 with x 6= 0, then 0 = xQT Qx = ‖Qx‖2 and therefore
Qx = 0 contradicting the linear independence of the columns of Q.

The solution space for this linear system is parameterized by r2 and can be
found in O(d3) by a standard method. Possible solutions have to fulfill r > 0,
λi ≥ 0, and λ1 = 1 −

∑m
i=2 λi. The center can be written as c =

∑m
i=1 λipi

with the λi being dependent on r2. Plugging this definition of c into Equation
(2) yields

zT z = (c− p1)
T (c− p1) = (

m∑
i=1

λipi − p1)
T (

m∑
i=1

λipi − p1) = r2s2
p1

. (5)

sp1 , p1, and the pi’s are known and the λi are dependent on r2; we can
conclude that above equation is a doubly quadratic equation in r. We choose
r minimal under the condition that ∀i : λi ≥ 0 and

∑
λi = 1. With

MB(V ) = MB(V, V ) and Lemma 3.1, we know that if V is a basis, there is
such a pair (λ, r) and with Lemma 3.2, we know that there is only one such
pair.

If V is, contrary to our assumption, not a basis, then we will not be able
to find a pair (λ, r) with r > 0, ∀i : λi ≥ 0, and

∑
λi = 1 as otherwise, V

were a basis.

With the help of Lemma 5.4, the implementation of the operation violates
is easy. For a point set V , we compute c and r as described in Lemma 5.4.
If V is not a basis, we will not be able to find c and r according to our
constraints; otherwise, we get c and r.

Assuming that the points p ∈ P have rational coordinates, it follows with
Equation 5 being a quadratic equation that r is of the form a + b

√
d for

a, b, d ∈ Q. c can be written as c =
∑

λipi with the λi being dependent on r
whereas it follows that c is of the form ac + bc

√
d. We can conclude that the

violates test can be done entirely in rational arithmetic assuming that the
point to be tested is represented in rational arithmetic.

5.3 Points with Anisotropic Distance Functions

In [23], Labelle defines a setting where every point in Rd has a distance
function

dp(c) =
√

(p− c)T Mp(p− c)
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for a symmetric positive definite matrix Mp. A symmetric positive definite
matrix Mp is a matrix so that ∀x ∈ Rn, x 6= 0 : xT Mpx > 0 and MT

p = Mp.
The condition that Mp is a positive definite matrix ensure that the unit circle
{x ∈ Rd | dp(x) ≤ 1} is mapped to an ellipsoid. We show that an ellipsoid is
a strictly convex object and therefore dp(c) fits into our framework.

Note that this definition could be extended to x ∈ Cd. Looking at the
miniball problem in C is possible because for x ∈ C, xT x is the Euclidean
distance of the point x from the origin as seen in R2. It follows that the
miniball problem in Cd can be translated to the miniball problem in R2d.

The setting that we presented in Section 5.2 is a special case of the setting
considered here. The reason for handling the scaled case separately is that
the implementation of the violates operation can be done nicely in the scaled
case but not in the anisotropic case. Setting Mp = I for all p ∈ P , we realize
that the traditional miniball problem as presented in [37] is a special case of
the anisotropic setting.

First, we show that the unit circle in the anisotropic setting is a strictly
convex object and second, we present a way to implement the violates oper-
ation.

Strict Convexity of Level Sets

Lemma 5.5. The distance function

dp(c) =
√

(p− c)T Mp(p− c)

has strictly convex level sets.

Proof. We show that dp(c) =
√

(p− c)T Mp(p− c) is a strictly quasi-convex
distance function and with Lemma 2.2, this implies that the level set is
strictly convex. A distance function is strictly quasi-convex if

∀x, y ∈ Rd, x 6= y, ∀λ ∈ (0, 1) : dp((1− λ)x + λy) < max{dp(x), dp(y)}

holds. As we can apply a matrix diagonalization for Mp, we can assume that
the space can be rotated so that the ellipsoid described by Mp can be written
as

dp(c) = dp′(c
′) =

√∑ (p′i − c′i)
2

ai

for some p′ and c′. Further,

dp′(c
′) =

√∑ ((p′i − yi)− (c′i − yi))2

ai

= dp′−y(c
′ − y)
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holds, we can conclude that the distance function is given as

dp(c) = d0(c
′) =

√∑ c′2i
ai

,

and that bd0(c
′) = d0(bc

′) holds. We assume that

x, y ∈ U = {x ∈ Rd |

√∑ c2
i

ai

≤ 1},

and the condition for strict quasi-convexity can be reformulated as ∀λ ∈
(0, 1), x, y ∈ U :√∑ ((1− λ)xi + λyi)2

ai

< max


√∑ x2

i

ai

,

√∑ y2
i

ai

 .

Assume that x, y ∈ U , x 6= y, and as we can scale, we can assume that
d0(x) = 1 and d0(y) ≤ 1. From the proof of Lemma 5.1, we know that the
function |x|2 = x2 is strictly convex for xi 6= yi. With x 6= y, we know that
there has to be an i so that xi 6= yi. It follows that√∑ ((1− λ)xi + λyi)2

ai

<

√
(1− λ)

∑ (xi)2

ai

+ λ
∑ (yi)2

ai

≤1

=d0(x)

= max{d0(x), d0(y)}

and strict quasi-convexity for dp(c) is shown. We can conclude that the level
sets for the distance functions dp(c) are strictly convex.

Violates Operation

It remains the implementation of the violates operation. In Section 5.2,
we have shown that for the scaled setting, the implementation of the vio-
lates operation boils down to solving a linear system of equations. For the
anisotropic setting, we will argue that in the general case, it is not possible
to reduce the violates operation to solving a linear system of equations; the
system at hand will be quadratic. Having a quadratic system of equations
does not make the implementation of the violates operation impossible but
slows it down and might make it difficult to do exact computations.
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p q

c

Figure 6: Counter example showing that in the anisotropic setting, the center
c has not to be contained in the convex hull of the points in P = {p, q}.

It seems to be difficult to use geometric properties such as in [16] because
the miniball in the anisotropic setting is not a nice geometric object but
rather a combinatorial structure. The miniball is defined by the intersection
of convex objects but it is not defined as a nice object with all basis points
contained on its boundary; notice that this is true in general for SC point
sets.

Notice that Lemma 5.2 cannot be adapted for the anisotropic setting;
Figure 6 gives a counter example.

Lemma 5.6. Let V ⊆ P be a set of points with distance function

dp(c) =
√

(p− c)T Mp(p− c)

and assume that V is a basis of P . Then MB(V, V ) = MB(P ), where
MB(V, V ) denotes the miniball containing the set V so that all points in
V lie on the boundary of the miniball. MB(P ) can be computed in time
O(t(d)) whereas t(d) is the time that is needed to solve a quadratic system of
equations.

Proof. The proof for MB(V, V ) = MB(P ) can be established in the same
way as in Lemma 5.4; we omit this here.

To prove that we can compute MB(P ) in time O(t(d)), we assume that
V = {p1, ..., pm} for m ≤ d + 1. The ball MB(V, V ) has center c and radius
r if and only if r ≥ 0 and (pi − c)T Mpi

(pi − c) = r2 for all i.
The listed conditions give us a system of equations with quadratic oc-

currences of c. In Lemma 5.4, we were able to remove those quadratic oc-
currences; let us give an example showing that this is not possible in the
anisotropic setting.

35



p q

s

Figure 7: Point set P = {p, q, s} with all points in P having positive definite
matrices defining the depicted ellipses.

Given a point set P = {p, q, s} with p =

(
0
0

)
, q =

(
5
0

)
, s =

(
3
3

)
and positive definite matrices

Mp =

(
3 0
0 1

2

)
, Mq =

(
2 0
0 1

)
, Mp =

(
2 0
0 3

)
.

These points and matrices define the configuration given in Figure 7. To find
the smallest enclosing ball in the anisotropic setting, we have to solve the
system of equations

dp(c) = r

dq(c) = r

ds(c) = r.

Rewriting and squaring this yields

3p2
1 − 6p1c1 + 3c2

1 +
1

2
p2

2 − p2c2 +
1

2
c2
2 = r2

2q2
1 − 4q1c1 + 2c2

1 + q2
2 − 2q2c2 + c2

2 = r2

2s2
1 − 4s1c1 + 2c2

1 + 3s2
2 − 6s2c2 + 3c2

2 = r2

and from this system of equations, we would like to remove all quadratic
occurrences of c1 and c2. As we can choose the point set arbitrarily, we have
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to be able to remove the quadratic occurrences for arbitrary c1 and c2 which
is equivalent to

(3a− 2b)c2
1 + (

1

2
a− b)c2

2 = 0

(3d− 2e)c2
1 + (

1

2
d− 3e)c2

2 = 0

having a nontrivial solution for a, b, d, e for all possible c1 and c2. It is easy
to see that there is no non-trivial solution and it follows that for an arbitrary
c, we cannot remove all quadratic occurrences of c. It follows that comput-
ing the smallest enclosing ball boils down to solve the quadratic system of
equations

∀i : (c− pi)
T Mpi

(c− pi) = r2 (6)

If V is a basis of P , we know by existence and uniqueness of MB(P ) that
there is exactly one solution fulfilling this system of equations and minimizing
r > 0 for |V | ≥ 2. With a standard method such as [25], we can find this
solution. If V is not a basis of P , then the system given in (6) will not have
a solution with c ∈ Rd and r > 0.

As long as we can find the solution for a quadratic system of equations
accurately, we are able to compute the miniball in the anisotropic setting
exactly. Notice that as long as Mp is a positive definite matrix, it can be
chosen arbitrarily.

On a side note, from the proof of Lemma 5.6 it follows immediately that
if all the points use the same matrix Mp, then we can remove the quadratic
occurrence of c and we are left with solving a linear system of equation. This
is intuitively correct as for points that use the same distance function, we
can distort the space according to the distance function and are left with the
miniball problem for the Euclidean setting.

5.4 Smallest Enclosing Ball of Balls

Fischer presents in [12] the problem of finding the smallest enclosing ball of
balls. Some of our approaches are taken from Fischer’s work and we show
that the smallest enclosing ball of balls problem fits into our framework. In
[12], Fischer shows how to compute the smallest enclosing ball of balls for
small instances (Lemma 5.2 in [12]) and we do not list this here; all we do
is to show that the distance function used in the smallest enclosing ball of
balls problem is a strictly convex distance function.
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Lemma 5.7. We consider the smallest enclosing ball of balls problem for
balls with rp ∈ R≥0. Assume that a ball with radius rp is centered at p ∈ P .
Then the smallest enclosing ball problem can be formulated with the help of
a distance function dp(c) = ‖p− c‖2 + rp.

Proof. This property is best proved using an image; see Figure 8.

c
p

q

s

rp

rq

rs

Figure 8: The Smallest Enclosing Ball of Balls problem makes use of the
distance function dp(c) = ‖p− c‖2 + rp.

With the help of Lemma 5.1, it follows directly that for rp ≥ 0,

dp(c) = ‖p− c‖2 + rp

is a strictly convex function and therefore the smallest enclosing ball of balls
problem fits into the concept of SC point sets.

For signed balls, Fischer introduces in Lemma 5.4 of [12] a slider or
shrinking operation. The idea is to change the radius of all balls by the same
real number and he then shows that such a changed setting has the same
basis and, up to the slide-factor, the same miniball MB(V ). We can conclude
that the problem of the smallest enclosing ball of signed balls can always be
transformed to an instance of smallest enclosing ball of balls and it is therefore
as well contained in the family of SC point sets. Transforming signed balls
to positive balls ensures that the distance function dp(c) = ‖p − c‖2 + rp is
positive for all c ∈ Rd though we could as well argue directly for signed balls;
see Section 5.6 for a possible strategy.

5.5 Smallest Enclosing Bregman Balls

In 1967, L. M. Bregman introduced in [3] the concept of Bregman divergence;
Censor and Lent summarize in [7] the material that was presented in the
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original paper. Let us give the definition for the Bregman divergence and
show that this distortion measure has strictly convex level sets.

The Bregman divergence

Dφ(p, q) = φ(p)− φ(q)− 〈p− q,∇φ(q)〉

is constructed with the help of the Bregman function φ(p) that is defined as
follows:

Definition 5.8. (Adapted Definition 1.2 from [6]) Let S be a non-
empty, open, and convex set, and for Λ and the closure cl(S) of S, cl(S) ⊆ Λ
holds. A function φ : Λ ⊆ Rn → R is called a Bregman function if it satisfies
the following conditions:

(i) φ is continuous on cl(S);

(ii) φ is strictly convex on cl(S);

(iii) φ is differentiable on S;

(iv) If x ∈ cl(S) and α > 0; then the partial level sets {z ∈ S | Dφ(x, z) ≤ α}
are bounded;

(v) If {xk}k∈N ⊂ S is a convergent sequence with the limit x∗ ∈ bdS :=
cl(S) \ S, the following limit exists and we have

lim
k→∞

〈∇φ(xk), x∗ − xk〉 = 0.

The class of Bregman divergences [31] includes the L2 norm Dφ(p, q) =
‖p− q‖2

2, the Kullback–Leibler divergence

Dφ(p, q) =
d∑

i=1

pi log

(
pi

qi

)
− pi + qi,

the Itakura–Saito distance

Dφ(p, q) =
d∑

i=1

pi

qi

− log

(
pi

qi

)
− 1,

the Mahalanobis distance

Dφ(p, q) = (p− q)T A(p− q)
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for a positive definite matrix A, and

Dφ(p, q) =
d∑

i=1

ps
i

s
+

(s− 1)qs
i

s
− piq

s−1
i , s ∈ N \ {0, 1}.

Based on the Bregman divergence, we can define smallest enclosing balls
in at least three different ways:

i. dp(c) = Dφ(c, p)

ii. dp(c) = Dφ(p, c)

iii. dp(c) =
Dφ(c,p)+Dφ(p,c)

2

Let us check the three different possibilities separately and start with
the first case. If we can show that for a fixed p ∈ S, Dφ(c, p) is a strictly
convex function in c, then it follows that a point set P with distance functions
dp(c) = Dφ(c, p) fits into our setting. Proving strict convexity for Dφ(c, p) in
c for a fixed p and c ∈ cl(S) is easy:

Dφ((1− λ)x + λy, p) = φ((1− λ)x + λy)− 〈(1− λ)x + λy,∇φ(p)〉
−φ(p) + 〈p,∇φ(p)〉

= φ((1− λ)x + λy)− (1− λ)〈x,∇φ(p)〉
−λ〈y,∇φ(p)〉 − φ(p) + 〈p,∇φ(p)〉

< (1− λ)(φ(x)− 〈x,∇φ(p)〉 − φ(p) + 〈p,∇φ(p)〉)
+λ(φ(y)− 〈y,∇φ(p)〉 − φ(p) + 〈p,∇φ(p)〉 (7)

= (1− λ)Dφ(x, p) + λDφ(y, p)

The inequality in Equation 7 follows from the strict convexity of φ(x) for
x ∈ cl(S). It remains to show that for a point set P ⊆ S with S as introduced
in Definition 5.8, c ∈ cl(S) has to hold in the general case. In [32], Nock and
Nielsen state that for the center c, there are αi with

∑n
i=1 αi = 1 so that

c = ∇−1
φ

(
n∑

i=1

αi∇φ (pi)

)
.

Using the fact that φ(x) is strictly convex and therefore ∇φ(x) is bijective,
they conclude that c has to lie in cl(S). It follows that we can reformulate
the miniball problem as

minimize r
subject to ∀p ∈ P : dp(c) ≤ r

c ∈ cl(S).
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without changing its solution. It is important to note that this does not
directly imply that dp(c) = Dφ(c, p) fits into our framework as we have shown
strict convexity of dp(c) only on the set cl(S). We have to show that we can
define the level sets L(p, t) on a convex space cl(S) ⊂ Rd and that none of
the properties that we have shown for Rd is destroyed by restricting to cl(S).
The definition of the level set L(p, t) can be adapted as

L(p, t) = {x ∈ cl(S) | dp(x) ≤ t}

and for the strict convexity of the level set, we select points x, y ∈ cl(S);
consult Section 2. For the definition of strictly quasi–convex dp(c), we select
again points x, y ∈ cl(S) and it should be possible to prove an adapted version
of Lemma 2.2. Existence of the miniball follows analogously as in Lemma
3.1 and using the knowledge that any possible center c has to be contained
in cl(S), it should be possible to show uniqueness though the proof strategy
as used in Lemma 3.2 might have to be slightly tweaked. The proof of the
combinatorial dimension works as well as cl(S) is a convex object. Last, the
proof for the miniball problem being an LP-type problem can be applied
directly as all preconditions have been established. Although this analysis
is not formal, we proceed with the assumption that the distance function
dp(c) = Dφ(c, p) fits into our framework.

For the second case with

dp(c) = Dφ(p, c) = φ(p)− φ(c)− 〈p− c,∇φ(c)〉,

−φ(c) is a strictly concave function but at the same time ∇φ(c) is not a
constant. It might be possible to find a φ(c) so that Dφ(p, c) is strictly
convex or at least strictly quasi-convex in c but this seems not to hold for
the general case.

For the third case,

dp(c) =
Dφ(c, p) + Dφ(p, c)

2

=
〈c− p,∇φ(p)〉+ 〈p− c,∇φ(c)〉

2

and it is not obvious whether strict convexity holds; we assume that it does
not hold for either argument in the general case.

Only the Bregman balls of the first type seem to be fitting into our setting.
Actually, Nock and Nielsen consider this setting and presented exact [31]
and approximate [32] solutions. In [31], they claim that Welzl’s algorithm
(Algorithm 1) can be applied to Bregman balls though they do not show that
Lemma 4.1 indeed holds.
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Let us show that Lemma 4.1 holds for a class of distance functions with
the first type Bregman ball being part of that class. To do so, we first show
two properties. We consider the class of strictly convex functions dp(c) so
that the system of equations

dq(c) = r, ∀q ∈ Q

can be reformulated as a linear system of equations. This can be clearly done
for the first type Bregman ball because

dq(c) = Dφ(c, q) = φ(c)− φ(q)− 〈c− q,∇φ(q)〉 = r, ∀q ∈ Q.

This can be reformulated with t = r − φ(c) as

〈q,∇φ(q)〉 − φ(q)− 〈c,∇φ(q)〉 = t, ∀q ∈ Q.

Because q ∈ Q is a constant, this is a system of linear equations. Further,
for b1, b2 ∈ cl(S) and λ ∈ (0, 1), define

e(b1, b2, λ) = (1− λ)dp(b1) + λdp(b2)− dp((1− λ)b1 + λb2)

= (1− λ)φ(b1) + λφ(b2)− φ((1− λ)b1 + λb2)

> 0.

Observe that the last inequality holds with strict convexity for φ and that
e(b1, b2, λ) is not dependent on p.

Lemma 5.9. Let Q ⊆ P with Q 6= ∅ be point sets and assume that dp(c) is
the distance function for all p ∈ P . Define MB(P, Q) to be the smallest ball
enclosing P and containing Q on its boundary and assume that MB(P, Q)
exists. Assume further that the system of equations ∀q ∈ Q : dq(c) = r can
be reformulated as a system of linear equations and that for all λ ∈ (0, 1),

e(b1, b2, λ) = (1− λ)dp(b1) + λdp(b2)− dp((1− λ)b1 + λb2) > 0

exists and is not dependent on p. Then MB(P, Q) is unique.

Proof. Finding the smallest enclosing ball containing Q on its boundary but
not necessarily containing P can be formulated as finding a minimum r ful-
filling

dq(c) = r, ∀q ∈ Q.

According to our precondition, there are d′q(c) and t so that the system of
equations can be reformulated as

d′q(c) = t, ∀q ∈ Q.
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This is a system of linear equations Ax = b with xi = ci for i ∈ {1, ..., d} and
xd+1 = t. As by our precondition, we know that there is a smallest enclosing
ball containing Q on its boundary and therefore this system of equations has
at least one solution.

If the system of linear equations has exactly one solution, then this solu-
tion defines the unique smallest enclosing ball with Q on the boundary. By
precondition, we know that MB(P, Q) exists and we conclude that the ball
defined by the only existing solution of Ax = b contains all p ∈ P ; we are
done for this case.

So let us assume that Ax = b has infinitely many solutions. The solution
space for Ax = b is defined as the affine space L1 = x′+L0 with x′ any solution
for Ax = b and L0 the solution space for Ax = 0. Assume that f : Rd+1 → Rd

is a projection with f(x) = y so that xi = yi for all i ∈ {1, ..., d}. Let
L′

1 = f(L1); L′
1 is the solution space ignoring the value of t. This can be

done because t is uniquely determined by the center c and the points in Q.
The space L′

1 contains all possible centers that have the same distance to
all points in Q. Let us define CQ(r) =

⋂
q∈Q L(q, r) and observe that CQ(r)

is a strictly convex object. CQ(r) defines the set of all centers so that the
ball with center c and radius r contains all points in Q but notice that the
points in Q are not necessarily on the boundary of the ball.

Because of the existence of MB(P, Q), we know that L′
1 and CQ(r) have

to intersect for some r and this intersection is a strictly convex object; let
us denote this intersection as C ′

Q(r) = CQ(r) ∩ L′
1. The boundary of C ′

Q(r)
contains all centers c so that the ball with center c and radius r contains all
points in Q on its boundary.

Let us analogously define CP (r) =
⋂

p∈P L(p, r) and C ′
P (r) = CP (r)∩L′

1.
Because CP (r) is a strictly convex object and L′

1 is an affine subspace, there
is a smallest r0 so that C ′

P (r0) 6= ∅. Assume that b = C ′
P (r0) is the unique

point contained in that set; the point has to be unique because a hyperplane
and a strictly convex object first intersect in exactly one point. Notice that
C ′

Q(r0) 6= ∅ has to hold because C ′
P (r0) ⊆ C ′

Q(r0).
If the point b lies on the boundary of C ′

Q(r0), then we have found the
unique smallest ball enclosing all points in P and containing all points in Q
on the boundary. This holds because ∀q ∈ Q : dq(b) = r0 and ∀p ∈ P :
dp(b) ≤ r0.

So assume that b is properly contained in C ′
Q(r0). Assume that r1 > r0

is the first radius so that the boundary of C ′
Q(r1) and C ′

P (r1) intersect. If
they intersect only in one point, then we have found the unique center of
MB(P, Q) and we are done. Therefore assume that for r1 as small as possible
with r1 > r0 , there are at least two points b1, b2 on the boundary of C ′

P (r1) so
that both b1 and b2 are as well contained on the boundary of C ′

Q(r1); this are
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the conditions for MB(P, Q) to be not unique. Based on those assumptions,
let us show a contradiction and conclude that MB(P, Q) is unique. From
the given conditions, it follows that

∀q ∈ Q : dq(b1) = dq(b2) = r1

and
∀p ∈ P : dp(b1) ≤ r1 ∧ dp(b2) ≤ r1.

We know that

λ ∈ (0, 1) : e(b1, b2, λ) = (1− λ)dp(b1) + λdp(b2)− dp((1− λ)b1 + λb2) > 0

exists and is not dependent on p. For all p ∈ P and λ ∈ (0, 1), we have

(1− λ)dp(b1) + λdp(b2) = e(b1, b2, λ) + dp((1− λ)b1 + λb2)

It follows with Q ⊆ P that

∀q ∈ Q : dq((1− λ)b1 + λb2) = r1 − e(b1, b2, λ) < r1

and
∀p ∈ P : dp((1− λ)b1 + λb2) ≤ r1 − e(b1, b2, λ) < r1.

This means that for r1 − e(b1, b2, λ) < r1, C ′
Q(r1 − e(b1, b2, λ)) and C ′

P (r1 −
e(b1, b2, λ)) intersect in at least one point; a contradiction to the assumption
that r1 is minimal and uniqueness for MB(P, Q) follows.

Lemma 5.9 allows us to conclude that Algorithm 1 can indeed be applied.
For the case of Bregman balls with points p ∈ P having their own individual
basis function φp(x), it is easy to find a counter example showing that this
Bregman ball cannot be found with Welzl’s algorithm as given in Algorithm
1. Notice that for φp(x) = sp‖x‖2

2, we have the Bregman divergence

dp(c) = Dφp(c, p) = φp(c)− φp(p)− 〈c− p,∇φp(p)〉
= sp‖c− p‖2

2.

This is almost the same setting as we used to construct the counter example
in Figure 3 and the original counter example can be nicely adapted. Alter-
natively, we could use the Mahalanobis distance with matrices Ap and this
results in the well-known anisotropic setting.

Even though we can apply Algorithm 1, let us proceed by showing how
to implement the violates operation for the first type of Bregman balls.
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Violates Operation

The definition of the Bregman divergence dp(c) = Dφ(c, p) looks a bit com-
plicated but keeping in mind that p is constant, we know that both ∇φ(p)
and rp = −φ(p) + 〈p,∇φ(p)〉 are constant.

Lemma 5.10. Let V ⊆ P be a set of points with distance function

dp(c) = Dφ(c, p) = φ(c)− φ(p)− 〈c− p,∇φ(p)〉

and assume that V is a basis of P . With MB(V, V ), let us denote the
set of miniballs of the point set V that contains V on its boundary. Then
MB(V, V ) = MB(P ) and MB(P ) can be computed in time O(t(d)) where
O(t(d)) is the time used to solve an arbitrary system of equations of size d.

Proof. The first part of the proof can be established in the same way as for
Lemma 5.4.

Above, we have observed that for a constant p, 〈c,∇φ(p)〉 is linear in
c and rp is constant. It follows that if φ(c) is linear in c, we get a linear
system of equations and can proceed analogously to Lemma 5.4. If φ(c) is
of polynomial form, we can proceed analogous to Lemma 5.6. In case φ(c)
is not of polynomial form, we have to solve an arbitrary system of equations
and we assume that this can be done in time O(t(d)).

5.6 Superorthogonal Balls

In [12], Fischer presents the concept of superorthogonal balls. Such balls are
defined for a point set P having points p ∈ P with distance function

dp(c) = ‖p− c‖2
2 − r2

p.

With Lemma 5.1, it follows immediately that dp(c) has a strictly convex
level set L(p, t). It is important to notice that there are points x ∈ Rd with
dp(x) < 0. This prohibits that dp(c) is a proper distance function but we can
define

d′p(c) = ‖p− c‖2
2 − r2

p + max
p∈P

{r2
p}

so that dp(x) ≥ 0 for all x ∈ Rd and for all p ∈ P . d′p(c) is a proper distance
function with a strictly convex level set L′(p, t). We can solve the smallest
enclosing ball problem for the distance function d′p(c); let us assume that the
smallest enclosing ball has center c and radius r. We claim that the ball
with center c and radius r−maxp∈P{r2

p} is the smallest enclosing ball for the
point set P using the distance function dp(c).
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Assume not and that there is a ball enclosing P for the function dp(c)
with radius r′ < r−maxp∈P{r2

p}; for all points p ∈ P , dp(c) ≤ r′ has to hold.
From this, it follows that there is a ball with radius r′ + maxp∈P{r2

p} < r
enclosing all points in P for the distance function d′p(c); a contradiction to
our assumption that the smallest enclosing ball has radius r.

Let us show how to implement the violates operation for superorthogonal
balls.

Violates Operation

The function d′p(c) can be written as

d′p(c) = ‖p− c‖2
2 − r2

p + max
p∈P

{r2
p} = fp(‖p− c‖2)

for fp(x) = x2− r2
p + maxp∈P{r2

p}. The function fp(x) is a strictly increasing
function for x ∈ R≥0 and Lemma 5.2 can be applied; the center c of the
smallest enclosing ball is contained in the convex hull of the point set P .
Lemma 5.3 is solely based on Lemma 5.2 and therefore holds as well. Our
next Lemma follows closely Lemma 5.4:

Lemma 5.11. (Adaption of Lemma 5.4) Let V ⊆ P be a set of points
with distance function

d′p(c) = ‖p− c‖2
2 − r2

p + max
p∈P

{r2
p}

and assume that V is a basis of P . With MB(V, V ), let us denote the
set of miniballs of the point set V that contains V on its boundary. Then
MB(V, V ) = MB(P ) and MB(P ) can be computed in time O(d3).

Proof. We proceed along the same line as in the proof of Lemma 5.4. The
first part can be done equivalently, so let us show how to compute MB(V, V ).

Assume that V = {p1, ..., pm} for m ≤ d + 1 and that the ball MB(V, V )
has center c and radius r ≥ 0. This hold if and only if ‖pi − c‖2

2 = r + r2
pi
−

maxp∈P{r2
p} for all i. Defining z = c − p1 and zpi

= pi − p1 for 1 < i ≤ m,
we can reformulate these conditions as

zT z = r + r2
p1
−max

p∈P
{r2

p}

(zpi
− z)T (zpi

− z) = r + r2
pi
−max

p∈P
{r2

p}, i ∈ [m] \ {1}

Subtracting the former from the later yields m− 1 equations of the form

zT
pi
zpi
− 2zT zpi

= r2
pi
− r2

p1
, i ∈ [m] \ {1}. (8)
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Notice that those equations are linear in z. From Lemma 5.2, we know that
c can be written as c =

∑
λipi for λi with

∑
λi = 1 and it follows that

z = c− p1 =
m∑

i=1

λipi − p1 =
m∑

i=2

λipi −
m∑

i=2

λip1 =
m∑

i=2

λi(pi − p1) = Qλ

for Q = (zp2 , ..., zpm) and λ = (λ2, ..., λm). This equation can be used to
rewrite Equation 8 as

2zT
pi
Qλ = zT

pi
zpi
− r2

pi
+ r2

P1
, i ∈ [m] \ {1}. (9)

We can conclude that this is a linear system of equations of the form Aλ = b
with A = 2QT Q. In the same way as in Lemma 5.4, we can conclude that
QT Q is regular. The linear system of equations can be solved by a standard
method in O(d3). We select a solution so that λi ≥ 0 for all i ∈ [m] \ {1}
and λ1 = 1 −

∑m
i=2 λi; by existence of the smallest enclosing ball, we know

that there is one solution fulfilling these conditions.

Notice that the system of equations

dq(c) = ‖q − c‖2
2 − r2

q = r, ∀q ∈ Q

can be reformulated with t = r − c2 as

d′q(c) = q2 − 2qc− r2
q = t, ∀q ∈ Q

resulting in a linear system of equations. Further observe that with strict
convexity for dp(c) and λ ∈ (0, 1),

e(b1, b2, λ) = (1− λ)dp(b1) + λdp(b2)− dp((1− λ)b1 + λb2)

= (1− λ)(pT p− 2pT b1 + bT
1 b1 − r2

p)

+λ(pT p− 2pT b2 + bT
2 b2 − r2

p)

−(pT p− 2pT ((1− λ)b1 + λb2)

+((1− λ)b1 + λb2)
T ((1− λ)b1 + λb2)− r2

p)

= (1− λ)bT
1 b1 + λbT

2 b2 − ((1− λ)b1 + λb2)
T ((1− λ)b1 + λb2)

> 0

exists and is not dependent on p; it follows that Lemma 5.9 can be applied.
We can conclude that additionally to Algorithm 2, Algorithm 1 can as well
be used to compute the smallest enclosing superorthogonal ball. This is, to
the best of our knowledge, a new insight.
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Figure 9: Cone with center c and angle r for the point set
{p1, p2, p3, p4, p5, p6}.

5.7 Smallest Enclosing Cone

Given a set of points P , we would like to find the smallest cone with a d− 1
dimensional ball as base so that the rays from the origin — called apex —
to the points P are contained in the cone. This is equivalent to minimizing
the angles between a center vector and all other vectors in the set and gives
us the distance function

dp(c) = arccos

(
pT c

‖p‖‖c‖

)
.

The cone with center vector c and radius — or better angle — r is defined
as

{x ∈ Rd | dc(x) ≤ r}.
We consider only cones that have a radius r < π

2
and therefore the max-

imum distance dx(y) for two points x, y ∈ {x ∈ Rd | dc(x) ≤ r} is strictly
smaller than π. Without this restriction, the smallest enclosing cone might
not be unique as it can be seen in Figure 10. It will turn out that without
this restriction, dp(c) cannot have a strictly convex level set.

Before we reduce the smallest enclosing cone problem to the smallest
enclosing ball problem, we try to show that the distance function dp(c) has
strictly convex level sets though one bit will be missing.

Lemma 5.12. Given functions g and f with dom(g) being the domain of g,

a, b ∈ dom(g) : a < b ⇒ g(a) < g(b)

and
λ ∈ (0, 1) : f((1− λ)x + λy) < (1− λ)f(x) + λf(y).

Then g ◦ f is a strictly quasi-convex function
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Figure 10: Example for a case with r ≥ π
2

having four smallest enclosing
cones; one of the cones is hinted at by the gray area.

Proof. Plugging in yields

λ ∈ (0, 1) : g(f((1− λ)x + λy)) < g((1− λ)f(x) + λf(y))

≤ max{g(f(x)), g(f(y))}

whereas the last inequality holds because (1−λ)f(x)+λf(y) describes a line
between f(x) and f(y); the maximum value on this line is attained in one of
the end points or in all points if f(x) = f(y).

A similar Lemma can be formulated for the combination of a strictly
decreasing and a strictly concave function.

Lemma 5.13. Given functions g and f with

a, b ∈ dom(g) : a < b ⇒ g(a) > g(b)

and
λ ∈ (0, 1) : f((1− λ)x + λy) > (1− λ)f(x) + λf(y).

Then g ◦ f is a strictly quasi-convex function

Proof. We proceed as in Lemma 5.12. Plugging in yields

λ ∈ (0, 1) : g(f((1− λ)x + λy)) < g((1− λ)f(x) + λf(y))

≤ g(min{f(x), f(y)})
≤ max{g(f(x)), g(f(y))}.

Again, the second to the last inequality holds because (1−λ)f(x)+λf(y)
describes a line and its minimum is attained at either f(x) or f(y).
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We try to employ Lemma 5.13 to show that dp(c) is a strictly quasi-convex
distance function but unfortunately, one piece is missing. Observe that p is
contained in the cone with center c and radius r if and only if p′ = p

‖p‖2 is
contained in the same cone; assume therefore that we are given a point set

P ′ = {p ∈ P | p
‖p‖2}. Let us first try to show that pT c

‖p‖2‖c‖2 is a strictly concave

function in c. For x, y ∈ Rd with ‖x‖ = ‖y‖, we can show strict concavity
for all λ ∈ (0, 1) as

(1− λ)
pT x

‖p‖2‖x‖2

+ λ
pT y

‖p‖2‖y‖2

=
(1− λ)pT x + λpT y

‖p‖((1− λ)‖x‖2 + λ‖y‖2)

<
pT ((1− λ)x + λy)

‖p‖2‖(1− λ)x + λy‖2

whereas the inequality holds because ‖x‖2 is with Lemma 5.1 a strictly convex
function. For x, y with ‖x‖ 6= ‖y‖, we are unfortunately not able to show
the strict concavity though we assume that it holds as well for this case.

As a consequence, we proceed with the assumption that pT c
‖p‖2‖c‖2 is a strictly

concave function. If this assumption should turn out to be wrong, then any
result following that is based on the strict convexity of the distance function
dp(c) will be void.

The function arccos(t) is a strictly decreasing function in the interval
t ∈ (−1, 1); this holds because

∂

∂t
arccos(t) = − 1√

1− t2
.

With Lemma 5.13, we can conclude — using above assumption — that for
p ∈ P ′, two vectors x and y with x

‖x‖ 6=
y
‖y‖ and an angle of less than π

2
to p,

and therefore having an angle strictly smaller than π between x and y, we
have

arccos

(
pT ((1− λ)x + λy)

‖(1− λ)x + λy‖2

)
< max

{
arccos

(
pT x

‖x‖2

)
, arccos

(
pT y

‖y‖2

)}
and strict quasi-convexity for dp(c) follows. Notice that arccos(t) is a strictly
decreasing function only in the interval (−1, 1). This is not a problem for

t =
pT ((1− λ)x + λy)

‖(1− λ)x + λy‖2

= 1

because this implies that ((1−λ)x+λy) and p point into the same direction.
By our assumption, x and y cannot point into the same direction and there-

fore pT x
‖x‖2 < 1 or pT y

‖y‖2 < 1. This leads to arccos
(

pT x
‖x‖2

)
> 0 or arccos

(
pT y
‖y‖2

)
> 0

and it follows that strict convexity holds as well for this case.
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arccos(t)
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Figure 11: arccos(t) in the interval [−1, 1].

Notice that for a point set P , strict quasi-convexity for dp(x) holds only
if there is a center c that has an angle of less than π

2
to all points in P . This

is equivalent to stating that there has to be a (d−1) dimensional hyperplane
through the origin so that all points in P are strictly on one side of the
hyperplane; we say that all points lie in one hemisphere. We have seen above
that if this does not hold, the smallest enclosing cone might not be unique.

Instead of showing how to implement violates, we show that the smallest
enclosing cone problem can be reduced to the smallest enclosing ball prob-
lem. Even though the smallest enclosing cone problem fits into our framework
(using above assumption), it makes sense to show this reduction. Our frame-
work gives access to a general purpose algorithm whereas more sophisticated
algorithms might exist for the smallest enclosing ball problem; e.g. [14]. The
difference between the general purpose and specialized algorithms might be
significant; especially in high dimensions.

The reduction of the smallest enclosing cone problem to the smallest
enclosing ball problem was first shown by Lawson in [24] though without
proof of correctness. Barequet and Elber choose in [1] a different approach
and employed a smallest enclosing circle algorithm on the surface of a 3-
dimensional sphere.

Reduction to Smallest Enclosing Ball

Let us consider the smallest enclosing cone of a point set P ⊂ Rd. The
smallest enclosing cone is not dependent on the length of the vectors in P
and therefore we can set p′ = p

‖p‖ for all points p′ 6= 0 and observe that 0 is
contained in every cone with apex at the origin and we can therefore remove
0 from the point set P. Let us call this modified point set P ′ and notice that
this transformation can be done in time O(dn). All points in P ′ lie on the
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Figure 12: Example for placing the points in P onto the unit sphere. The
line in the second example indicates that the points lie in one hemisphere.

unit sphere with the origin as its center and by our precondition, all points
in P ′ have to lie strictly in one hemisphere.

Let us prove the reduction of the smallest enclosing cone problem to
the smallest enclosing ball problem with two approaches. The first one is a
geometric argumentation and the second one is based on showing the equality
of two optimization problems.

For a point set P ′ lying on the unit sphere, we know that the center c of
the smallest enclosing ball is equal to the point in the convex hull of P ′ that
is closest to the origin. This property follows directly from a theorem stated
in [26]:

Theorem 5.14. (Theorem 8.7.4 from [26]) Let p1, ..., pn be points in Rd,
and let Q be the d×n matrix whose jth column is formed by the d coordinates
of the point pj. Let us consider the optimization problem

minimize xT QT Qx−
∑n

j=1 xjp
T
j pj

subject to
∑n

j=1 xj = 1 (10)

x ≥ 0

in the variables x1, ..., xn. Then the objective function f(x) := xT QT Qx −∑n
j=1 xjp

T
j pj is convex, and the following statements hold.

(i) Problem (10) has an optimal solution x∗.

(ii) There exists a point p∗ such that p∗ = Qx∗ holds for every optimal
solution x∗. Moreover, the ball with center p∗ and squared radius −f(x∗)
is the unique ball of smallest radius containing P .

For points on the unit sphere, pT
j pj = 1 and the optimization problem
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Figure 13: f covers {p1, p2, p3, p4} but does not cover {p1, p2, p3, p4, p5}.

from Theorem 5.14 can be reformulated for our case as

minimize xT QT Qx

subject to
∑n

j=1 xj = 1

x ≥ 0

The objective function can be interpreted as the distance between the point
p∗ = Qx and the origin. Due to the additional constraints, the point p∗ has
to be in the convex hull of the point set and our claim follows.

By our precondition, all points in P ′ have to lie strictly in one hemisphere
and we can conclude that the origin is not contained in the convex hull of
P ′; therefore, the distance d between the origin and the center c is strictly
greater than zero.

Because we minimize the distance between the origin and the center c,
we can conclude that the center c has to lie on the boundary of the convex
hull of P ′. The boundary face g containing c has to be spanned by at least
two points; assuming that |P ′| > 1. The vector c has to be perpendicular to
g as otherwise, we could find a point c′ 6= c on g that is closer to the origin.

Definition 5.15. For a d − 1 dimensional hyperplane f not containing the
origin, let us say that f covers a point if and only if the point is either
on the hyperplane f , or the origin and the point are on opposite sides of f .
We say that a point set P is covered by f if and only if all points in P are
covered.

Lemma 5.16. Given a hyperplane f intersecting the unit sphere and let us
assume that the point b on f closest to the origin has d = ‖b‖2 > 0. Then for
a point set P ′ lying on the unit sphere, every point covered by f is contained
in the ball with center b and radius r =

√
1− d2.

Proof. Assume that Q′ ⊆ P ′ is the set of points covered by f . For every
point q′ ∈ Q′, let aq′ be the distance between q′ and f ; points lying on f
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Figure 14: A point q′ covered by f is contained in the ball with center b and
radius r =

√
1− d2.

have aq′ = 0 and all other points in Q′ have a positive distance. For every
point q′ ∈ Q′, consider the 2 dimensional plane spanned by the two vectors
q′ and b. With Pythagoras, we know that the distance between b and the
projection of q′ onto f is

tq′ =
√

1− (d + aq′) =
√

1− d2 − a2
q′ − 2daq′

and it follows that the distance between b and q′ is√
a2

q′ + 1− d2 − a2
q′ − 2daq′ =

√
1− d2 − 2daq′ .

With both d > 0 and aq′ ≥ 0, it follows that all points covered by f are
contained in the circle with center b and radius r =

√
1− d2.

Next, we will use Lemma 5.16 to show that all points in P ′ are covered
by h.

Lemma 5.17. Assume that the smallest enclosing ball for a point set P ′

lying on the unit sphere and being contained in one hemisphere has center c
and radius r. Further assume that h is the plane perpendicular to the vector
c that contains the point c. Then h covers the point set P ′.

Proof. Assume that h does not cover P ′ and that q′ ∈ P ′ is a point not
covered by h. Let uq′ be the distance between q′ and h and assume that we
have chosen q′ so that uq′ is maximal. Because q′ is not covered by h, uq′ > 0
has to hold. Let tq′ be the distance between c and the projection of q′ onto
h;

tq′ =
√

1− (d− uq′)2 =
√

1− d2 − u2
q′ + 2duq′ .

We can conclude that the distance bq′ between q′ and c is defined as

bq′ =
√

1− d2 − u2
q′ + 2duq′ + u2

q′ =
√

1− d2 + 2duq′ .
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Notice that if the ball with center c and radius r covers q′, then r ≥ bq′ has
to hold.

Let h′ be a d − 1 dimensional hyperplane that is perpendicular to the
vector c and that contains q′; let c′ be the intersection of h′ and the vector c
and let d′ = ‖c′‖2 = d− uq′ . The distance b′q′ between q′ and c′ is defined as

b′q′ =
√

1− d′2 =
√

1− (d− uq′)2 =
√

1− d2 − u2
q′ + 2duq′

which, by geometrical reasoning, can be seen to be the same as tq′ . It follows
immediately that

b′q′ =
√

1− d2 − u2
q′ + 2duq′ <

√
1− d2 + 2duq′ = bq′ (11)

and with Lemma 5.16, we know that all points covered by h′ are contained
in the ball with center c′ and radius b′q′ . Because q′ has maximum distance
to h, either all points are covered by h′ or none of the points is covered; the
later happens if h′ and the points in P ′ do not lie in one hemisphere. If all
points in P ′ are covered by h′, it follows that the ball with center c′ and
radius b′q′ < bq′ ≤ r encloses all points in P ′. This is a contradiction to the
assumption that the ball with center c and radius r is a smallest enclosing
ball.

If h′ does not cover the points in P ′, then we have to adapt our argumen-
tation as follows. Instead of choosing h′ to be perpendicular to c, we choose
h′ so that all points are covered; because the points in P ′ have to lie in one
hemisphere, we know that there is such a h′. We choose c′ to be the point on
h′ closest to the origin and by the assumption that all points of P ′ lie in one
hemisphere, d′ = ‖c′‖2 = d − v > 0. Because the original h′ and the points
in P ′ did not lie in one hemisphere, we know that d − uq′ < 0. This allows
us to conclude that v < uq and plugging this into Equation 11 yields

b′q′ =
√

1− d2 − v2 + 2dv <
√

1− d2 − v2 + 2duq′ <
√

1− d2 + 2duq′ = bq′ .
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Again, we can conclude that the ball with center c′ and radius b′q′ < bq′ ≤ r
encloses all points in P ′; again a contradiction to the assumption that the
ball with center c and radius r is the smallest enclosing ball for the point set
P ′. It follows that all points in P ′ are covered by h.

Next, we prove that h is the d−1 dimensional hyperplane with maximum
distance from the origin that is covering all points in P ′.

Lemma 5.18. For a point set P ′ lying on the unit sphere and being con-
tained in one hemisphere, let the smallest enclosing ball have center c and
radius r. The d− 1 dimensional hyperplane h is perpendicular to the vector
c and contains the point c. Then h is the d− 1 dimensional hyperplane with
maximum distance from the origin covering all points in P ′.

Proof. Assume that there is a d − 1 dimensional hyperplane h′ with larger
distance from the origin than h and that h′ is covering all points in P ′. Let
c′ be the point on h′ closest to the origin. Notice that c is contained in a
facet of the convex hull of P ′; let Q′ ⊂ P ′ be the points spanning this facet.
Because all points in Q′ have to be covered by h′, c has as well to be covered
by h′.

Consider the 2 dimensional plane spanned by the two vectors c and c′.
Let us distinguish two cases and show for both of them that h′ cannot have
a larger distance to the origin than h has:

i. h and h′ have the same orientation: If h and h′ have both the same
orientation and the distance between the origin and h′ is larger than the
distance between the origin and h, then c cannot be covered by h′; a
contradiction.

ii. h and h′ have a different orientation: Because h and h′ have different
orientations, the distance between c and c′ has to be larger than zero.
The point c has to be covered by h′ and it follows with Pythagoras (see
Figure 15) that d′ < d; a contradiction to our assumption that h′ is
farther from the origin than h.

With Lemma 5.17, we can conclude that h is the d− 1 dimensional plane
with maximum distance from the origin that is covering P ′.

As we have seen before, a cone is defined by a d−1 dimensional sphere as
base and by an apex; assuming — as it is guaranteed by our precondition —
that all points in P ′ lie in one hemisphere. We choose the origin as apex, say
that the basis is defined as the intersection of the d dimensional unit sphere
with a d−1 dimensional hyperplane f , and assume that f intersects the unit
sphere. We have to justify our choice by showing that
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Figure 15: c′ cannot be farther from the origin than c.

i. the intersection of the unit sphere and f produces a d − 1 dimensional
sphere

ii. every possible cone can be defined by a basis that is defined in this way.

For the first part, observe that we can rotate the space so that f is
perpendicular to a coordinate axis; say x1. Then the intersection between
the unit sphere (

∑
x2

i = 1) and f (x1 = const) can be described as

d∑
i=2

x2
i = 1− x2

1

and it follows immediately that the result of the intersection is a d − 1 di-
mensional sphere with radius r =

√
1− x2

1.
For the second part, notice that we can orient f arbitrarily and therefore

the cone can have an arbitrary orientation. Further, notice that we can place
f at arbitrary distance from the origin and therefore produce spheres with
radius 0 ≤ r < 1. With the help of those spheres, we can produce cones with
angles ω = arctan

(
r
d

)
; with r =

√
1− d2, it follows that we can produce

every ω ∈ [0, π
2
). This covers all cones we are interested in and it follows that

we can produce arbitrary bases and therefore all cones we are interested in
can be defined this way.

Next, we will show that the smallest enclosing cone problem can be re-
duced to the smallest enclosing ball problem. To do so, we will use the fact
that h covers all points in P ′.

Lemma 5.19. Assume that for a point set P ′ lying on the unit sphere and
being contained in one hemisphere, the smallest enclosing ball has center c
and radius r. Let h be the d− 1 dimensional hyperplane perpendicular to the
vector c and containing the point c. Then the intersection of h and the unit
sphere defines the base of the smallest enclosing cone.
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Figure 16: h covering P ′ defines a valid cone.

Proof. Assume that h has distance d from the origin. We are using the same
notation as in Lemma 5.16 and proceed in two steps:

i. h defines the basis of a valid enclosing cone: Assume that the cone
is defined by a d − 1 dimensional sphere with center c and radius r as
base. This definition can be translated to a cone with center vector c
and angle ω = arctan

(
r
d

)
.

Because h covers P ′, we know that for all points p′ ∈ P ′, we have ap′ ≥ 0
and tp′ ≤ r, and it follows that

arctan

(
tp′

d + ap′

)
≤ ω

for all p′ ∈ P ′. This concludes the proof that h defines the base of a
valid enclosing cone.

ii. There is no smaller enclosing cone: Let us assume that there is a
smaller enclosing cone and show a contradiction. Let this cone be defined
by h′ and h′ has a larger distance from the origin than h. Lemma 5.18
tells us that h′ cannot cover all points in P ′; let q ∈ P ′ be a point that is
not covered. Assume that h′ has distance d′ > d from the origin, that c′

is the center and r′ < r the radius of the basis. As we have seen above,
we can equivalently define the cone by the center vector c′ and the angle
ω′ = arctan

(
r′

d′

)
. Consider the 2 dimensional plane spanned by the two

vectors c′ and q and let us look at two cases. If the distance between q
and the vector c′ is larger than r′, then it follows with Pythagoras (see
Figure 17) that ]c′0q > ω′; a contradiction. If the distance between q
and the vector c′ is smaller or equal to r′, then the smallest enclosing
cone and q are in different hemispheres; a contradiction.
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Figure 17: h′ not covering P ′ cannot define a valid cone.

We can conclude that the intersection of h and the unit sphere defines
the base of the smallest enclosing cone of the point set P ′.

With Lemma 5.19, we can give a simple procedure for the computation
of the smallest enclosing cone using a reduction to the smallest enclosing ball
problem:

i. Transform the point set P to P ′ by setting p′ = p
‖p‖ .

ii. Compute the smallest enclosing ball for P ′; this returns a center c and
a radius r.

iii. Center c defines the center vector of the cone and the angle is defined as

ω = arctan

(
r

‖c‖

)
.

After having shown the equivalence of the smallest enclosing cone problem
and the smallest enclosing ball problem with a geometric argumentation, we
approach the problem from the optimization point of view.

Let us first start with the smallest enclosing ball problem. From Theorem
5.14, we know that the smallest enclosing ball problem can be defined as

minimize xT QT Qx−
∑n

j=1 xjp
T
j pj

subject to
∑n

j=1 xj = 1

x ≥ 0

and for all points pj lying on the unit sphere, we can rewrite this as

minimize xT QT Qx

subject to
∑n

j=1 xj = 1 (12)

x ≥ 0. (13)
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From [2] (p. 299), we know that

minimize 1
2
xT Hx + dT x

subject to Ax ≤ b

is equivalent to

maximize −1
2
xT Hx− bT u

subject to Hx + AT u = −d

u ≥ 0.

Conditions 12 and 13 can be formulated in the form Ax ≤ b with

A1,i = 1, A2,i = −1, Ai+2,i = −1

for i ∈ [d],
b1 = 1, b2 = −1,

and all other entries zero. Further, d = 0 holds and we can follow that

minimize xT QT Qx

subject to
∑n

j=1 xj = 1

x ≥ 0.

is equivalent to

maximize −1
2
xT QT Qx− bT u

subject to QT Qx + AT u = 0

u ≥ 0.

From Theorem 5.14, we know that Qx = c and that the jth column of Q
contains pj. We can therefore rewrite the optimization problem as

maximize −1
2
cT c− u1 + u2

subject to ∀pj ∈ P ′ : pT
j c + u1 − u2 − u2+j = 0 (14)

u ≥ 0.

Notice that with u ≥ 0, we can reformulate Condition 14 as

∀pj ∈ P ′ : pT
j c + u1 − u2 = u2+j ≥ 0 (15)

and we know that this can be interpreted as points lying on one side of a
hyperplane h that is defined by c and y = u1 − u2. With Theorem 5.14, c
lies in the convex hull of P ′. This means that

c =
∑

pj∈P ′

apj
pj,

∑
pj∈P ′

apj
= 1, ∀pj ∈ P ′ : apj

≥ 0
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and therefore with Condition 15

∑
pj∈P ′

apj

(
pT

j c + u1 − u2

)
=

∑
pj∈P ′

apj
pj

T

c +
∑

pj∈P ′

apj
(u1 − u2)

=cT c + u1 − u2 ≥ 0

holds. We can add the derived condition to the optimization problem without
changing its solution and get

maximize −1
2
cT c− u1 + u2

subject to ∀pj ∈ P ′ : pT
j c + u1 − u2 ≥ 0 (16)

cT c + u1 − u2 ≥ 0 (17)

u ≥ 0.

Conditions 16 and 17 can be interpreted as points lying on one side of a
hyperplane h defined by c and y = u1 − u2. From Condition 17, it follows
that y ≥ −cT c and we would like to claim that Condition 16 is fulfilled for
y = −cT c. Observe that the distance between the hyperplane h and the
origin is given as

| − y|
‖c‖2

and we can conclude that for y = −cT c, the distance is ‖c‖2. As c has distance
‖c‖2 from the origin and as h is orthogonal to c (with [15]), it follows that c
is contained in the hyperplane h for y = −cT c. c is the point on the convex
hull of P ′ that is closest to the origin and it follows that all points pj ∈ P ′

have to fulfill
pT

j c− cT c ≥ 0

as otherwise, we could find a c′ that is closer to the origin. It follows that
Conditions 16 and 17 are fulfilled for y = u1 − u2 = −cT c.

Notice that for y ≤ −cT c, the point c is not covered by the hyperplane
defined by c and y and it follows with the fact that c is contained in the
convex hull of P ′ that a point in P ′ is not covered and therefore Condition
16 is not fulfilled.

With Condition 17, we know that the objective function is upper bounded
by

−1

2
cT c− y ≤ −1

2
cT c + cT c =

1

2
cT c.

In order to satisfy u ≥ 0, we set u1 = 0 and u2 = −y = cT c and as for a
given point set P ′, c is uniquely determined, it follows that the problem is
maximized for y = u1 − u2 = −cT c with solution 1

2
cT c.
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After having analyzed the smallest enclosing ball problem, let us have
a look at the smallest enclosing cone problem. The smallest enclosing cone
problem can be defined as

minimize v

subject to ∀pj ∈ P ′ : arccos
(

pT
j c

‖pj‖‖c‖

)
≤ v.

As we have seen before, the function arccos(t) is a strictly decreasing function
in the interval we are considering and therefore we can rewrite the optimiza-
tion problem as

maximize v

subject to ∀pj ∈ P ′ :
pT

j c

‖pj‖‖c‖ ≥ v. (18)

Condition 18 can be reformulated as

∀pj ∈ P ′ : pT
j c− v‖c‖‖pj‖ ≥ 0

whereas ‖pj‖ = 1 and we write

maximize v

subject to ∀pj ∈ P ′ : pT
j c− v

√
cT c ≥ 0. (19)

Notice that Conditions 16 and 19 have the same form. By the reasoning that
we have made for Condition 16, we know that Condition 19 is fulfilled for
v =

√
cT c and that there is no v ≥

√
cT c so that Condition 19 is fulfilled. It

follows that the two optimization problems fulfill in the optimum the same
conditions and therefore the two problems are equivalent.

On a side note, observe that c and v
√

cT c define a hyperplane and ac-
cording to [15], the distance between this hyperplane and the origin is given
as

v
√

cT c√
cT c

= v.

We can conclude that the smallest enclosing cone problem is equivalent to
finding the hyperplane with maximum distance from the origin that — as
stated by Condition 19 — covers all points in P ′.

This concludes our alternative proof showing that the smallest enclosing
ball problem and the smallest enclosing cone problem are the same.
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6 Non-SC Point Sets and the Miniball

We present miniball algorithms for two types of point sets that are not part
of the family of SC point sets. The two algorithms are more or less obvious
but we state them here for completeness.

6.1 Points with L∞ Distance Function

In L∞, the distance function dp(c) can be written as

dp(c) = ∞
√∑

|pi − ci|∞ = max
i
{|pi − ci|} .

Notice that dp(c) has level sets that are not strictly convex but we still
investigate the smallest enclosing ball problem. Using the inequality

max
i
{|pi − ci|} ≤ r

for the miniball problem, the ball can be interpreted as a hypercube; the
problem of finding the smallest ball is reduced to finding the smallest hyper-
cube that contains all points.

The minimum hypercube can be found in time O(d|P |) by going through
all points p ∈ P and computing the smallest and the largest coordinate in
each dimension; let us denote those coordinates by li and ui for the smallest
resp. largest coordinate in dimension i. The side length b of the smallest
hypercube containing all points p ∈ P is b = maxi∈[d]{ui − li}. Notice that
the coordinates of the center c are fixed only for dimensions i with ui− li = b.
For all other dimensions,

ui + li
2

− (b− (ui − li)) ≤ ci ≤
ui + li

2
+ (b− (ui − li)).

The given algorithm does not return a unique smallest enclosing ball. It is
important to realize that this is not a problem of the algorithm at hand but
rather a property of the miniball in L∞.

Notice that we can extend this algorithm to the L∞ anisotropic setting.
In the anisotropic setting for L∞, the distance function is defined as

dp(c) = ∞

√∑∣∣∣∣pi − ci

si

∣∣∣∣∞ = max
i

{
|pi − ci|

si

}
and b = maxi{ui−li

si
}. Extending to the anisotropic setting is possible because

the axes of the coordinate systems are considered separately.
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Figure 18: The cross polytope in 2 dimensions. The two faces {1, 1} and
{−1,−1} are opposite and by applying an appropriate transformation ma-
trix, we can transform the space so that the two faces {1, 1} and {−1,−1}
are parallel to the x′ axis.

6.2 Points with L1 Distance Functions

As for L∞ distance functions, L1 distance functions have not strictly convex
level sets but again, we investigate the miniball problem. The smallest en-
closing ball for L1 is a cross polytope with 2d faces. For sake of simplicity,
assume that the center of the cross polytope is located at the origin and that
the cross polytope has radius r. The faces are determined by d vectors of
length r that are aligned with the coordinate axes. Two opposite faces —
say the two faces defined by vectors in positive direction for all coordinate
axes and by vectors in negative direction for all coordinate axes — have the
same orientation.

To find the smallest enclosing ball in L1, we can employ the same ideas
as given for the smallest enclosing ball in L∞. For every two opposite faces,
we can find a rotation matrix so that the two faces are perpendicular to
one coordinate axis; in Figure 18, the two faces are perpendicular to the y′

axis. Finding the smallest and the largest coordinate along this axis gives
us the minimum distance between the two faces; let us denote the smallest
coordinate by li and the largest by ui. Notice that for every pair of opposite
faces, we have to employ a separate rotation.

The smallest cross polytope containing all points has radius r = maxi{ui−li
2
}.

To compute this radius, we have to employ 2d−1 rotations and every rotation
costs d2|P |.
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7 Approximation and ε-Core Sets

In the previous section, we have shown that the smallest enclosing ball of
an SC point set can be computed in expected time linearly dependent on
the number of points but unfortunately exponentially dependent on the di-
mension. In this section, we try to get rid of this exponential dependence
of the dimension and investigate approximative solutions. An approximative
solution for the miniball problem is a ball that is not much larger than the
exact miniball and that contains all points of the point set.

Definition 7.1. Let P be a point set with the smallest enclosing ball MB(P )
having center c and radius r and let AMB(P ) be a ball with center cA and
radius rA so that all points in P are enclosed in AMB(P ). We say that
AMB(P ) is an (1 + ε)-approximation of MB(P ) if rA ≤ (1 + ε)r.

Bǎdoiu and Clarkson introduced in [4, 5] the concept of ε-core sets. First,
let us define ε-core sets.

Definition 7.2. Let P be a point set, S ⊂ P , and say that the smallest
enclosing ball MB(S) has center cS and radius rS. The point set S is an
ε-core set if the ball with center cS and radius (1+ ε)rS contains all points of
P and if |S| = f(ε) for some function f that is independent on |P | and d.

Observe that the smallest enclosing ball of an ε-core set is a (1 + ε)-
approximation. With S ⊂ P , rS ≤ r has to hold and we know that all points
in P are contained in a ball with center cS and radius (1 + ε)rS ≤ (1 + ε)r.
It follows that whenever we have an ε-core set, we can conclude that there is
a (1 + ε)-approximation. Notice though that the opposite direction does not
hold as the non-existence of ε-core sets does not imply that there cannot be
a (1 + ε)-approximation.

ε-core sets are interesting because the size of the ε-core set S is dependent
only on ε and neither on the dimension nor on the size of the point set.
Assume that P ⊂ Rd and therefore S ⊂ Rd. With |S| = f(ε), we can reduce
the point set S to df(ε)e dimensional space. In this reduced space, Algorithm
2 can be applied and the miniball can be computed. If f(ε) < d holds, then we
can conclude that the computation of MB(S) is not exponentially dependent
on d but rather exponentially dependent on df(ε)e.

Let us give a short outline for this section. First, we analyze point sets of
points with L2 distance functions. In [4, 5], Bǎdoiu and Clarkson show that
ε-core sets exist for such point sets by presenting algorithms. In Section 7.1,
we will show that removing an optimal point from a point set can decrease
the radius by at most a constant factor whereas a point P is optimal if
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MB(P \ {p}) is as large as possible. We are interested in a bound on the
decrease for the radius as this seems to present a simple core set algorithm.
Always remove the point so that the remaining points have a miniball that is
as large as possible. Even though we are able to show a constant upper bound
for the decrease in radius, we are not able to prove the existence of core sets
with that knowledge though we suspect that this is due to our analysis and
not due to the nature of the problem.

In Section 7.2, we present an example showing that for SC point sets,
there are configurations that cannot have ε-core sets. In Section 7.3, we show
that the decrease in radius for SC point sets is not bounded by a constant
factor but rather by a factor that is dependent on the distance functions
involved. We present this result without application but assume that there
is a connection between this result and the existence of core sets for SC point
sets with a size that is dependent on ε and the distance functions. In Section
7.4, we present two core set algorithms and show for the first that it is not
working for SC point sets and conjecture that the second algorithm produces
core sets with a size dependent on ε and the distance functions.

7.1 Analysis of Point Sets with L2 Distance Functions

The concept of ε-core sets is intuitively coupled with the property that re-
moving an optimal point from the basis does not produce a ball with much
smaller radius. With optimal point, we mean a point q from the point set P
so that removing q results in a point set with a smallest enclosing ball that is
as large as possible. First, we analyze the situation for the distance function
L2 and show that the decrease in radius is bounded. Second, we will use this
fact to give hints at how to prove the existence of ε-core sets in an alternative
way though pieces and bits are missing.

First, let us present a Lemma that will be employed in later parts of this
section.

Lemma 7.3. For a point set P ⊂ Rd with ‖p− q‖ = u for all p, q ∈ P and
with |P | = d + 1, the smallest enclosing ball MB(P ) has center

cd =
1

d + 1

∑
p∈P

p

and radius

rd =

√
d

2(d + 1)
u.
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Proof. Say that a point set P with ‖p− q‖ = u for all p, q ∈ P is a point set
in equilateral position and notice that a point set in equilateral position is a
regular d-simplex. With Theorem 3.2 from [10], we know that the centroid
and the circumcenter of the regular d-simplex coincide and we can therefore
conclude that the circumcenter is contained in the convex hull of P . With
Lemma 5.2, the circumball and the smallest enclosing ball of the d-simplex
have to be equal and it follows that the distance between the centroid and
an arbitrary p ∈ P is equal to the radius of the smallest enclosing ball. From
[17], we know that the distance between the centroid and a p ∈ P is

rd =

√
d

2(d + 1)
u

and our claim follows.

To start our analysis of the maximal decrease in radius, we show that
a point set in equilateral position results in the worst possible decrease in
radius for an optimal point.

Lemma 7.4. For a point set P ⊂ Rd with |P | ≥ d + 1, say that MB(P )
has radius rd and center cd and that for all p ∈ P , MB(P \ {p}) has radius
rd−1,p and center cd−1,p. Then

min
p∈P

rd

rd−1,p

is maximized if |P | = d + 1 and P is in equilateral configuration.

Proof. We proceed with a case distinction:

1. |P | > d + 1: With Lemma 3.4, there is an S ⊂ P with |S| ≤ d + 1 so
that MB(S) = MB(P ). Let p ∈ S be an optimal point and observe
that with S ⊂ P , the radius of MB(S \ {p}) has to be smaller or equal
compare to the radius of MB(P \ {p}). It follows that the decrease
in radius for S is at least as large as for P and we can assume that
|P | ≤ d + 1.

2. |P | = d+1: We may assume that all points p ∈ P lie on the boundary of
MB(P ) as otherwise removing a point that is not lying on the boundary
results in rd−1,p = rd and this can clearly not maximize minp∈P

rd

rd−1,p
.

With Theorem 5.14, we know that cd−1,p is the point in the convex hull
conv(P \{p}) that is closest to cd. With the observation that the points

67



cd

p

q1 q2
hp

cd−1,p

Figure 19: Points q1 and q2 that lie on the hyperplane hp fulfill (qi −
cd−1,p)

T (cd−1,p − cd) = 0.

in P \ {p} lie on a (d − 1)-dimensional hyperplane hp, it follows (see
Figure 19) that for all q ∈ P \ {p},

(q − cd−1,p)
T (cd−1,p − cd) = 0. (20)

From Lemma 7.3, we know that for a point set in equilateral position,

rd =

√
d

2(d + 1)
u

holds for u being the distance between any two points of P . Let ed,p =
‖cd−1,p − cd‖. Because of Equation 20, we know with Pythagoras that

ed,p =
√

r2
d − r2

d−1,p.

For a point set P in equilateral position, it follows that

ed,p =
√

r2
d − r2

d−1,p

=

√
d

2(d + 1)
u2 − d− 1

2d
u2

=
u√

2d(d + 1)

=
rd

d
.

Let us restate Lemma 5.1 from [4] and give a short sketch of their proof:
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Lemma 7.5. (Lemma 5.1 from [4]) Let B′ be the largest ball con-
tained in a simplex T , such that B′ has the same center as the minimum
enclosing ball B(T ). Then

rB′ ≤
rB(T )

d
.

Proof. Observe first that(
rB′

rB(T )

)d

=
vol(B′)

vol(B(T ))
.

Say that e(T ) is the ellipsoid with maximum volume inside T and that
E(T ) is the ellipsoid with minimum volume enclosing T . vol(B′) ≤
vol(e(T )) and vol(B(T )) ≥ vol(E(T )) hold and therefore(

rB′

rB(T )

)d

≤ vol(e(T ))

vol(E(T ))
.

Affine mappings preserve volume ratios [19] and we can therefore as-
sume that T is the regular d-simplex.

For a regular d-simplex T , the smallest enclosing ellipsoid is a ball.
Assume not and notice that we can define a mapping for the vertices of
the regular d-simplex and it follows that there has to be more than one
smallest enclosing ellipsoid. But from [37], we know that the smallest
enclosing ellipsoid is unique and it follows that the smallest enclosing
ellipsoid is a ball.

Further, the largest ellipsoid enclosed in a regular d-simplex T is a
ball. Assume not and notice that we can again define a mapping for
the vertices of the regular d-simplex and we can conclude that there are
at least two largest enclosed ellipsoids. By Theorem 3 from [19], the
ellipsoid of maximum volume that is contained in a compact body is
unique. It follows that the ellipsoid with maximum volume contained
in T is a ball.

Because both the largest enclosed and the smallest enclosing ellipsoids
are balls, we can conclude that the centroid of the regular d-simplex is
the center of both balls. For those two balls, we can apply the John
Ellipsoid Theorem and it follows from [19, 20] that

re(T )

rE(T )

=
1

d
.
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As both e(T ) and E(T ) are balls, we can conclude that(
rB′

rB(T )

)d

≤ vol(e(T ))

vol(E(T ))
=

(
re(T )

rE(T )

)d

=

(
1

d

)d

and
rB′

rB(T )

≤ 1

d

follows.

Say that the largest ball with center cd that is contained in conv(P )
has radius rB′ . Because cd−1,p is the point on conv(P \ {p}) that is
closest to cd, it follows that rB′ = minp∈P ed,p. With Lemma 7.5, we
can conclude that

min
p∈P

ed,p = rB′ ≤
rd

d
. (21)

Observe that for a point set P in equilateral position, ed,p = rd

d
for all

p ∈ P and Equation 21 holds with equality.

As rd−1,p =
√

r2
d − e2

d,p, rd is fixed, and ed = min{ed,p} is maximal

for a point set in equilateral position, it follows that maxp∈P rd−1,p is
minimal for a point set in equilateral position. Further, this allows us
to conclude that

min
p∈P

rd

rd−1,p

is maximized for a point set in equilateral configuration.

Summarizing the two cases, we can conclude that a point set P in equi-
lateral configuration maximizes

min
p∈P

rd

rd−1,p

.

Notice that Lemma 7.4 can as well be used for point sets P ⊂ Rd with
|P | < d + 1 as such a point set can be mapped to R|P |−1 and then fulfills the
precondition of the Lemma.

After having shown that point sets in equilateral position are the worst
case for decrease in radius, we show that the decrease for this worst case is
bounded from above by a constant factor.
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Lemma 7.6. For a point set P ⊂ Rd with |P | = d + 1, assume that MB(P )
has radius rd and for p ∈ P , MB(P \ {p}) has radius rd−1,p.

min
p∈P

rd

rd−1,p

≤ 1

cos
(

π
6

)
holds for all d ≥ 2.

Proof. We proceed by induction and first show the base case for P ⊂ R2.
From Lemma 7.4, we know that the point set P with the largest value for

min
p∈P

rd

rd−1,p

has to be in equilateral position. With simple trigonometric reasoning, we
get r1,p = r2 cos

(
π
6

)
and therefore

r2

r1,p

=
r2

r2 cos
(

π
6

) =
1

cos
(

π
6

) ≈ 1.1547 > 1.

This already concludes the analysis for the base case. Next, we look at
P ⊂ Rd. To bound the ratio

rd

rd−1,p

,

we show that

rd

rd−1,p

≤ rd−1

rd−2,p

(22)

holds. Observe that the point set has to be in equilateral position and it is
therefore a regular d-simplex. With Lemma 7.3, we know that that

rd =

√
d

2(d + 1)
u

whereas u stands for the edge length of the d-simplex. Notice that removing
a vertex from a regular d-simplex produces a regular (d− 1)-simplex and

rd−1,p = rd−1 =

√
d− 1

2d
u

follows. The definitions for rd and rd−1,p yield

f(d) =
rd

rd−1,p

=
d√

(d + 1)(d− 1)
.
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Differentiating f(d) results in

∂

∂d

(
d√

(d + 1)(d− 1)

)
=

−1

((d + 1)(d− 1))
3
2

and it follows that f(d) is a strictly decreasing function for all d ≥ 2. We
can conclude that

rd

rd−1,p

≤ rd−1

rd−2,p

holds and therefore
rd

rd−1,p

≤ 1

cos
(

π
6

)
for all d ≥ 2. With Lemma 7.4 it follows that for any point set,

min
p∈P

rd

rd−1,p

≤ 1

cos
(

π
6

)
holds.

Based on the knowledge that minp∈P
rd

rd−1,p
is bounded from above by a

constant factor, it seems reasonable to assume that we can use a similar
technique to show that there are core sets of size f(ε) for some function f
that is independent on |P | and d.

First, let us show that the distance between the centers of two small-
est enclosing balls MB(P ) and MB(P \ {p}) is maximal for a point set in
equilateral configuration.

Lemma 7.7. Given a point set P ⊂ Rd with p ∈ P maximizing rd−1,p. Let
MB(P ) have center cd and radius rd and MB(P \ {p}) center cd−1,p and
radius rd−1,p. Say that ed = ‖cd − cd−1,p‖. For a fixed rd, ed is maximal for
a point set P in equilateral position with |P | = d + 1.

Proof. This follows directly from the proof of Lemma 7.4. Recall that we
have shown in that proof that ed is maximal for a point set P in equilateral
position with |P | = d + 1.

Based on Lemma 7.7, we show that ed is bounded from above by a con-
stant factor.

Lemma 7.8. For a point set P ⊂ Rd and p ∈ P maximizing rd−1,p, the
distance ed between the centers of MB(P ) and MB(P \{p}) is bounded from
above by

ed ≤
rd√
6
.
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Proof. With Lemma 7.7, we know that ed is maximal if the point set P is in
equilateral position. For such a point set P , we know with Lemma 7.3 that

rd =

√
d

2(d + 1)
u (23)

where u is the distance between any two points in the equilateral point set P .

As we have argued in the proof of Lemma 7.4, ed =
√

r2
d − r2

d−1 and plugging

the definition of rd into this yields

ed =
√

r2
d − r2

d−1 =
u√

2d(d + 1)
=

rd

d
.

Differentiating ed produces

∂

∂d

u√
2d(d + 1)

= − (2d + 1)u

(2d(d + 1))
3
2

< 0

and the last inequality holds for all d ≥ 1 and u > 0. It follows that ed is
strictly decreasing and that

ed ≤ e2 =
u

2
√

3
(24)

for all d ≥ 2. Reformulating Equation 23 gives

u =

√
2(d + 1)

d
rd (25)

and differentiating Equation 25 yields

∂

∂d

√
2(d + 1)

d
rd = − 1√

2(d + 1)d
3
2

rd (26)

which is negative for all d ≥ 1. It follows that u is strictly decreasing as d is
increasing and assuming that rd is fixed.

u ≤
√

2rd

follows and plugging this into Equation 24 yields

ed ≤
rd√
6
.
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One is tempted to use Lemma 7.8 to bound the core set size. We know
that for all points p ∈ P , ‖p − cd‖ ≤ rd. In the worst case, p, cd, and cd−1

are on a common line and ‖p − cd−1‖ ≤ rd + ed follows. More generally,
‖p− cd−l‖ ≤ rd +

∑d
i=d−l ei holds. The definition of the core set states that

∀p ∈ P : ‖p− cd−l‖ ≤ (1 + ε)rd

is fulfilled with core set size f = d− l. It follows that an f fulfilling

rd +
d∑

i=d−l

ei ≤ (1 + ε)rd

is the size of a possible core set. Plugging in the upper bound from Lemma
7.8 results in

rd +
d∑

i=d−l

ei ≤rd + l
rd√
6

=

(
1 +

l√
6

)
rd

≤(1 + ε)rd

Reformulating this yields
l ≤

√
6ε.

As the core set size is f = d− l,

f ≥ d−
√

6ε

and it follows that we are not able to establish a bound only dependent on ε
in this way.

Our analysis has two main problems. First, our upper bound for ed is
only tight for d = 2 and ed < rd√

6
holds for d > 2. This could be improved by

bounding
∑d

i=d−l ei directly instead of bounding ed, ed−1, ... separately and
then taking the sum of the bounds. Second, the points p, cd, cd−1, and cd−2

lie not on a common line and therefore summing up the ei’s gives us only a
rough upper bound. Sure, it should be possible to sum up ei’s considering
the position of the cd−l+i’s but it is no immediately obvious that a point set
in equilateral position is really the worst case for the distance ‖p − cd−l+i‖.
So far, we have only shown that ed is maximal in the equilateral case. It
could be that the distance ‖p− cd−2‖ is larger for another point set that has
a more obtuse angle ^pcd−1cd−2 than a point set in equilateral position.

Next we define a better upper bound for
∑d

i=d−l ei.
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Lemma 7.9. For any point set P ⊂ Rd and p ∈ P maximizing rd−1,p, let ed

be the distance between the centers of MB(P ) and MB(P \ {p}).

d∑
i=d−l

ei < rd

√
d + 1

d

(
−l

2d(d− l)
+ ln(d)− ln(d− l − 1)

)
holds.

Proof. We proceed in two steps. First, we put rd and rd−i for a point set in
equilateral position into relation. Second, we use this relation to derive an
upper bound on

∑d
i=d−l ei.

With Lemma 7.7, we know that ed is maximal for a point set in equilateral
position. From Lemma 7.3, we know that for a point set in equilateral
position,

rd =

√
d

2(d + 1)
u

holds and

rd−1 =

√
(d + 1)(d− 1)

d
rd

follows. For rd−2, we have

rd−2 =

√
(d− 2)(d− 1)d(d + 1)

(d− 1)d
rd

and more generally

rd−i =

√∏d−1
j=d−i j

∏d−1
j=d−i(j + 2)∏d−1

j=d−i(j + 1)
rd

=

√∏d−1
j=d−i j

∏d+1
j=d−i+2 j∏d

j=d−i+1 j
rd

=

√
(d− i)(d− i + 1)d(d + 1)

∏d−1
j=d−i+2 j∏d

j=d−i+1 j
rd

=

√
(d− i)(d + 1)

(d− i + 1)d
rd.

(27)

Using Equation 27, we try to find a good upper bound for
∑d

i=d−l ei. In
the proof of Lemma 7.8, we have seen that ei = ri

i
for a point set in equilateral
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position. With Equation 27,

ed−i =
rd−i

d− i

=

√
d + 1

d(d− i)(d− i + 1)
rd.

Plugging this into the summation yields

d∑
i=d−l

ei =rd

√
d + 1

d

l∑
i=0

1√
(d− i)(d− i + 1)

and it remains to find an explicit formula for

l∑
i=0

1√
(d− i)(d− i + 1)

.

Observe that √
(d− i)(d− i + 1) >

√
(d− i)(d− i) = d− i

and therefore
1√

(d− i)(d− i + 1)
<

1

d− i

holds and this bound is essentially tight. Plugging this upper bound back
into the summation gives us

l∑
i=0

1√
(d− i)(d− i + 1)

<
l∑

i=0

1

d− i

whereas the right side of the equation is related to the harmonic number.
For the harmonic number, the following bounds are known:

1

2(n + 1)
+ ln(n) + γ <

n∑
i=1

1

i
<

1

2n
+ ln(n) + γ.

Further,

l∑
i=0

1

d− i
=

d∑
i=1

1

i
−

d−l−1∑
i=1

1

i

<
1

2d
+ ln(d) + γ − 1

2(d− l)
− ln(d− l − 1)− γ

=
−l

2d(d− l)
+ ln(d)− ln(d− l − 1)

76



and using this in the summation yields

d∑
i=d−l

ei < rd

√
d + 1

d

(
−l

2d(d− l)
+ ln(d)− ln(d− l − 1)

)
and our claim follows

Again, one is tempted to use Lemma 7.9 to show that ε-core sets exist.
As we have seen,

‖p− cd−l‖ ≤ rd +
d∑

i=d−l

ei

and therefore showing that

rd +
d∑

i=d−l

ei ≤ (1 + ε)rd

would imply
‖p− cd−l‖ ≤ (1 + ε)rd.

Using Lemma 7.9, we get

rd +
d∑

i=d−l

ei <rd

(
1 +

√
d + 1

d

(
−l

2d(d− l)
+ ln(d)− ln(d− l − 1)

))
≤(1 + ε)rd

and √
d + 1

d

(
−l

2d(d− l)
+ ln(d)− ln(d− l − 1)

)
≤ ε

follows. From this equation, it is obvious that the core set size f = d − l
cannot be expressed solely using ε and it follows that this analysis does not
yield an ε-core set as it is known to exist.

We can conclude that our analysis is still not good enough and we identify
two sources where we loose precision. First, the bound given in Lemma 7.9
for
∑d

i=d−l ei is not entirely tight. The problem in the proof is that the bound
for

d∑
i=0

1√
i(i + 1)

is not tight though notice that the error made by

d∑
i=0

1√
i(i + 1)

<
d∑

i=0

1

i
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is really small and we are not making a significant mistake here.
Second, we still ignore the fact that the points p, cd, cd−1, and cd−2 do

not lie on one line. As we have mentioned before, it is difficult to argue that
a point set in equilateral position is indeed the worst possible configuration.
As a consequence, we do not proceed.

7.2 Arbitrary Decrease in Radius and no ε-Core Sets
for SC Point Sets

In this section, we consider SC point sets and will show that removing an
optimal point can decrease the radius of the smallest enclosing ball arbitrar-
ily. As we will see, this implies that there cannot be ε-core sets with size
independent on the involved distance functions.

Notice that we do not consider d = 1 as removing one of the two points
defining a smallest enclosing ball gives us always a smallest enclosing ball
with radius 0.

To show that the decrease in radius can be arbitrarily large, let us con-
struct an example. First, we define the position of the points and second,
we construct anisotropic distance functions for all points from the point set.
We will show that for this point set, the decrease in radius as it was defined
in the previous section is arbitrarily large.

Assume that we are given a d-simplex defined by a vertex at the origin
0 and vertices at ei for i ∈ [d] and ei being the unit vector along the i’th
dimension. Observe that this d-simplex is defined by d + 1 (d− 1)-simplices;
let us call those simplices faces. A face is defined by d vertices and we use
this fact to name the faces; face i does not contain ei. One of the d + 1 faces
contains all ei for i ∈ [d] but not 0; this is face d + 1.

Based on the faces, we define the point set P. Assume that the largest
sphere IS(cd, r

′
d) contained in the d-simplex and touching all faces has center

cd and radius r′d. By symmetry, we know that cd = λI for some λ > 0 and

I =
∑d

i=1 ei. For face i, say that pi is the unique point contained in both face
i and the sphere IS(cd, r

′
d). By the fact that IS(cd, r

′
d) touches the faces in

exactly one point, we know that the line containing pi and cd is perpendicular
to the face i and it follows that pi =

∑
j∈[d]\{i} λej. As the distances ‖pi− cd‖

for i ∈ [d] and ‖pd+1 − cd‖ have to be equal to the radius, we can derive a
formula for λ;

‖pi − cd‖ =
√

λ2 = ‖pd+1 − cd‖ =

√√√√ d∑
i=1

(
1

d
− λ

)2

=

√
d

(
1

d
− λ

)2

.
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This quadratic equation has the two solutions

λ1 =

√
d + 1√

d(d− 1)
, λ2 =

√
d− 1√

d(d− 1)
.

One of the two solutions defines IS(cd, r
′
d) and the other one the circle with

center lying on the outside of the d-simplex but still touching face d + 1 and
the extended faces i for i ∈ [d]. Assuming that d ≥ 2,

λ2 −
1

d
=

d
3
2 − d− (d− 1)

√
d

(d− 1)d
3
2

=
1−

√
d

(d− 1)d
< 0

holds and we can conclude that λ2 < 1
d

and therefore cd = λ2I. The radius
r′d is given as

r′d = ‖p1 − cd‖ = λ2 =

√
d− 1√

d(d− 1)
.

e1

e2

c2

p2

p1

p3

After having defined the point set P = {p1, ..., pd+1}, we show how to
define the distance functions. For every point pi, we define an anisotropic
distance function

dpi
(c) =

√
(pi − c)T Mpi

(pi − c).

For points pi with i ∈ [d], Mpi
is a diagonal matrix with (Mpi

)i,i = 1
s2 and

∀j ∈ [d] \ {i} : (Mpi
)j,j = 1

t2
.
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For the point pd+1, we want to achieve the same scaling but due to the
special orientation of the face d + 1, this is a little bit more difficult. We
want to find a rotation matrix Rd and a diagonal matrix Dd so that

Mpd+1
= RT

d DdRd.

For the diagonal matrix, we say that (Dd)i,i = 1
t2

for all i ∈ [d − 1] and
(Dd)d,d = 1

s2 . Said differently, a point on γI is rotated onto the d’th com-

ponent; e.g. RdI =
√

ded. Further, all vectors v that are perpendicular to
λ2I fulfill Rdv =

∑d−1
i=1 aiei for some coefficients ai. Let us have a look at Rd

for small d, make an educated guess for Mpd+1
, and show that this guess is

indeed correct.
For d = 2, the rotation matrix R2 is defined as

R2 =

(
cos
(

π
4

)
− sin

(
π
4

)
sin
(

π
4

)
cos
(

π
4

) )
.

Obviously, R2I =
√

2e2 and R2

(
1
2
I − e1

)
= − e1√

2
. With

D2 =

(
1
t2

0
0 1

s2

)
,

the anisotropic matrix Mp3 is

Mp3 =
1

2s2t2

(
t2 + s2 t2 − s2

t2 − s2 t2 + s2

)
.

For d = 3, the rotation matrix R3 is

R3 =


1√
2
− 1√

2
0

1√
6

1√
6

− 2√
6

1√
3

1√
3

1√
3

 .

Again, R3I =
√

3e3 and R3

(
1
3
I − e1

)
= − e1√

2
− e2√

6
. With

D3 =

 1
t2

0 0
0 1

t2
0

0 0 1
s2

 ,

the matrix Mp4 is defined as

Mp4 =
1

3s2t2

 2s2 + t2 t2 − s2 t2 − s2

t2 − s2 2s2 + t2 t2 − s2

t2 − s2 t2 − s2 2s2 + t2

 .
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Let us give a last example before we make an educated guess for Mpd+1
and

show that this guess is indeed correct. For d = 4, the rotation matrix is

R4 =


1√
2
− 1√

2
0 0

1
2

1
2

−1
2

−1
2

0 0 1√
2

− 1√
2

1
2

1
2

1
2

1
2

 .

R4I =
√

4e4 and R4

(
1
4
I − e1

)
= − e1√

2
− e2

2
hold. The diagonal matrix D4 is

D4 =


1
t2

0 0 0
0 1

t2
0 0

0 0 1
t2

0
0 0 0 1

s2


and it follows that Mp5 is defined as

Mp5 =
1

4s2t2


3s2 + t2 t2 − s2 t2 − s2 t2 − s2

t2 − s2 3s2 + t2 t2 − s2 t2 − s2

t2 − s2 t2 − s2 3s2 + t2 t2 − s2

t2 − s2 t2 − s2 t2 − s2 3s2 + t2

 .

Based on those examples, we guess that the matrix Mpd+1
has

(Mpd+1
)i,i =

(d− 1)s2 + t2

ds2t2

for all i ∈ [d] and

(Mpd+1
)i,j =

t2 − s2

ds2t2

for all i, j ∈ [d] with i 6= j. First notice that

‖pd+1 − cd‖ = ‖1

d
I − λ2I‖ = ‖

√
d− 1

d(d− 1)
I‖ =

√
d− 1

d(d− 1)

√
d =

√
d− 1√

d(d− 1)

and that

‖pd+1 − ei‖ =

√
(d− 1)

1

d2
+

(
1

d
− 1

)2

=

√
d− 1

d

for i ∈ [d]. We claim that

dpd+1
(cd) =

‖pd+1 − cd‖
s

.

81



Using the Mpd+1
that we have suggested above, we get

dpd+1
(cd) =

√
(pd+1 − cd)

T Mpd+1
(pd+1 − cd)

=

√√√√( √
d− 1

d(d− 1)

)2
d2t2

ds2t2

=

√
d− 1√

d(d− 1)s

=
‖pd+1 − cd‖

s

as requested and we can conclude that Mpd+1
scales correctly along the vector

I. Next, we show that Mpd+1
scales correctly in the directions perpendicular

to I.

dpd+1
(ei) =

√
(pd+1 − ei)

T Mpd+1
(pd+1 − ei)

=

√
(pd+1 − ei)

T R

whereas

(R)i =
1

d

dt2

ds2t2
− (d− 1)s2 + t2

ds2t2
= −(d− 1)

dt2

and

(R)j =
1

d

dt2

ds2t2
− t2 − s2

ds2t2
=

1

dt2

for j 6= i. It follows that

dpd+1
(ei) =

√
(pd+1 − ei)

T R

=

√
(d− 1)

1

dt2
− d− 1

dt2
+

d− 1

dt2

=

√
d− 1√

dt

=
‖pd+1 − ei‖

t

and we can conclude that the matrix Mpd+1
is correct for directions perpen-

dicular to I.
After having defined the point set and the anisotropic distance functions,

we are left with analyzing distances between points and centers. So far, we
have analyzed the distances dpd+1

(cd) and dpd+1
(ei) and have seen that they
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are scaled with 1
s

respectively 1
t
. Next, let us analyze the distances dpi

(cd),
dpi

(ej), and dpi
(0) for i, j ∈ [d] and i 6= j. For dpi

(cd), we have

dpi
(cd) =

√
(pi − cd)

T Mpi
(pi − cd)

=

√
(−λ2ei)

T Mpi
(−λ2ei)

=

√
(−λ2)

2 1

s2

=

√
d− 1√

d(d− 1)s
.

and for dpi
(ej),

dpi
(ej) =

√
(pi − ej)

T Mpi
(pi − ej)

=

√√√√d− 2

t2

( √
d− 1√

d(d− 1)

)2

+
1

t2

( √
d− 1√

d(d− 1)
− 1

)2

=

√
d− 1√

dt
.

Finally, for dpi
(0),

dpi
(0) =

√
(pi − 0)T Mpi

(pi − 0)

=

√√√√(d− 1)

( √
d− 1√

d(d− 1)

)2
1

t2

=

√
d− 1√

d(d− 1)t
.

Observe that

dpi
(ei)− dpi

(0) =

√
d− 1√

dt
−

√
d− 1√

d(d− 1)t
=

√
d− 1√
d− 1t

> 0 (28)

for all d ≥ 2. Notice further that for all pi with i ∈ [d + 1],

dpi
(cd) =

√
d− 1√

d(d− 1)s
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and we can conclude that MB(P ) has radius

rd =

√
d− 1√

d(d− 1)s
.

Removing pd+1 form the point set yields a smallest enclosing ball MB(P \
{pd+1}) with radius

rd−1,pd+1
≤

√
d− 1√

d(d− 1)t

as with 0, we have a witness for a center. If we remove a point pi with i ∈ [d],
we know that all points in P \ {pi} have distance

√
d− 1√

dt

to ei and we can conclude that

rd−1,pi
≤
√

d− 1√
dt

.

With Equation 28 it follows that for all i ∈ [d + 1],

rd−1,pi
≤
√

d− 1√
dt

holds. Choosing

s �
√

d− 1

(d− 1)
3
2

t

lets us conclude that

rd−1,pi
≤
√

d− 1√
dt

�
√

d− 1√
d(d− 1)s

= rd

and it follows that the decrease in radius can be arbitrarily large. We can
conclude that removing an arbitrary point from the point set P ⊂ Rd gives
us a point set with an arbitrarily smaller smallest enclosing ball MB(P \{p})
compared to the smallest enclosing ball MB(P ).

So far, we have shown that the decrease in radius can be arbitrarily large
for an SC point set. Next, let us show that an arbitrary decrease in radius im-
plies that there cannot be ε-core sets for points having distance functions with
strictly convex level sets. To do so, we first have to compute the distances
between cd−1,pi

and pi. As we do not have the exact location of cd−1,pi
, we
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have to approximate and assume that s ≪ t and that therefore cd−1,pi
≈ ei

for i ∈ [d] or cd−1,pd+1
≈ 0. After having gone through the calculations for

dpi
(ei) and dpd+1

(0), we will show that the chosen approximations do not
destroy the result.

For i ∈ [d],

dpi
(cd−1,pi

) ≈dpi
(ei)

=

√
(pi − ei)

T Mpi
(pi − ei)

=

√√√√√
 ∑

j∈[d]\{i}

λ2ej

− ei

T

Mpi

 ∑
j∈[d]\{i}

λ2ej

− ei



=

√√√√√
 ∑

j∈[d]\{i}

λ2ej

− ei

T

R

whereas

Ri =(d− 1)λ2
t2 − s2

ds2t2
− (d− 1)s2 + t2

ds2t2

=
t2 + s2

(
d

3
2 − 1

)
d

3
2 s2t2

and

Rj = ((d− 2)λ2 − 1)
t2 − s2

ds2t2
+ λ2

(d− 1)s2 + t2

ds2t2

=
t2(1− d) + s2(d

3
2 − 1)

d
3
2 (d− 1)s2t2

for j ∈ [d] \ {i}. Therefore, it follows that

dpi
(cd−1,pi

) ≈

√√√√√
 ∑

j∈[d]\{i}

λ2ej

− ei

T

R

=
√

(d− 1)λ2Rj −Ri

=

√√√√t2 (d− 1) + s2
(
d3 − 2d

3
2 + 1

)
d2(d− 1)s2t2

.

(29)
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For dpd+1
(cd−1,pd+1

), we have

dpd+1
(cd−1,pd+1

) ≈dpd+1
(0)

=

√
(pd+1 − 0)T Mpd+1

(pd+1 − 0)

=

√
1

d
IT Mpd+1

1

d
I

=

√
t2

ds2t2

=
1√
ds

We can assume that we choose s and t so that st = 1. Let us argue that our
approximation of cd−1,pi

does not destroy the result. The distance between
the center cd−1,pi

and ei respectively between cd−1,pd+1
and 0 is dependent on

s and t. For a given dimension d, we choose s and t so that ‖cd−1,pi
−ei‖ ≤ 1

2d

and ‖cd−1,pd+1
−0‖ ≤ 1

2
√

d
. It follows that the distance between cd−1,pi

and ei

as perceived by pi is at most 1
2ds

= t
2d

and we can conclude that dpi
(cd−1,pi

) =
O(t). Similarly, the distance between cd−1,pd+1

and 0 as perceived by pd+1 is
at most 1

2
√

ds
= t

2
√

d
and therefore dpd+1

(cd−1,pd+1
) = O(t).

As d− 1 > 0 for all d ≥ 2, we can conclude that we can choose s � t so
that dpi

(cd−1,pi
) (see Equation 29) is arbitrarily large for all i ∈ [d+1]. From

rd−1,pi
≤
√

d− 1√
dt

,

it follows immediately that ε has to be arbitrarily large to fulfill

dpi
(cd−1,pi

) ≤ (1 + ε)rd−1,pi
.

It follows that ε has to be arbitrarily large even for a core set of size d and
we conclude that there cannot be a core set of size f(ε) with f independent
on |P | and d.

Even with this negative result about ε-core sets, we want to mention
that this does not imply that cd−1,pi

is a bad approximation for the smallest
enclosing ball MB(P ). Recalling Definition 7.1 for (1 + ε) approximation,

dpi
(cd−1,pi

) ≤ (1 + ε)rd

has to be fulfilled. As

rd =

√
d− 1√

d(d− 1)s
,
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e1

e2

c2

p2

p1

p3

c1,p2

c1,p3
c1,p1

Figure 20: Sketch showing that the center c1,pi
can be moved arbitrarily far

from cd. Notice that we do not shown the level set of the distance functions
itself but rather approximations that are not strictly convex.
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s = 1
t
, and

dpi
(cd−1,pi

) ≤ max{ 1√
ds

,

√√√√t2 (d− 1) + s2
(
d3 − 2d

3
2 + 1

)
d2(d− 1)s2t2

},

it is easy to see that both dpi
(cd−1,pi

) and rd grow at about the same rate
with t and that it might therefore be possible to find an ε independent on t
fulfilling

dpi
(cd−1,pi

) ≤ (1 + ε)rd.

To weaken this observation, notice that this only holds because the loca-
tion of cd−1,pi

is restricted to the d-simplex formed by 0 ∪
⋃

i∈[d] ei which is
an implication of the symmetry of the involved distance functions. Choosing
distance functions that are asymmetrical will allow to place cd−1,pi

arbitrarily
far from cd and at the same time make dpi

(cd−1,pi
) arbitrarily large. We do

not proceed formally as this is likely to get messy but consult Figure 20 for
an informal description.

Observe that in case of symmetrical distance functions, it seems that the
distance between cd and cd−1,p for an optimal point p cannot be arbitrarily
large. With above observation about a similar rate of growth of dpi

(cd−1,pi
)

and rd, this seems to hint at the possibility that an approximation algorithm
for anisotropic point sets might exist.

7.3 Maximum Decrease in Radius with Dependence
on the Distance Function for SC Point Sets

With the results from the previous section, we know that it is not possible
to bound the decrease in radius for SC point sets by a constant factor. What
we try to do here is to show that the decrease in radius is bounded if we allow
the bound to be dependent on s and t as presented below. The motivation
for doing so is the intuition that the decrease in radius and core sets are
somehow related concepts.

In Section 7.1, we tried to prove the existence of ε-core sets based on
the fact that the decrease in radius is bounded by a constant factor but
unfortunately, we failed doing so. If one is succeeding to show this relation
for L2, one might be able to proceed similarly for SC point sets and show
that for SC point sets, there are core sets of size εf(s, t) that are (1 + ε)-
approximations.

Right now, we are not able to make the formal connection between the
decrease in radius and the existence of core sets but we state the results for

88



pi

Ltpi
(pi, a)

Lspi
(pi, a)

L(pi, a)

Figure 21: The level set L(pi, a) (thick) with the associated level sets
Lspi

(pi, a) and Ltpi
(pi, a).

completeness and for the case that the formal connection between decrease
in radius and core sets is shown.

Assume that we have a point set P with arbitrary distance functions
that have strictly convex level sets. For all p ∈ P and a ∈ [0,∞), let
L(p, a) = {x | x ∈ Rd, dp(x) ≤ a} and assume that

Lsp(p, a) = {x | x ∈ Rd, dp,sp(x) =
‖p− x‖

sp

≤ a} ⊆ L(p, a)

with sp fulfilling above condition and being as large as possible. Analogously,
we assume that for all p ∈ P and a ∈ [0,∞),

L(p, a) ⊆ Ltp(p, a) = {x | x ∈ Rd, dp,tp(x) =
‖p− x‖

tp
≤ a}

with tp being as small as possible while still fulfilling above condition.
Define s = minp∈P{sp} and t = maxp∈P{tp} and observe that s ≤ t. Let

us say that the point set Ps has the same points as P but that the points use
the distance functions dp(x) = ‖p−x‖

s
; the point set Pt is defined analogously.

Lemma 7.10. Assume that the smallest enclosing ball MB(P ) has radius
rd. A point set Ps as defined above has a smallest enclosing ball MB(Ps)
with radius rd,s and

rd,s ≥ rd

holds.
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Proof. Assume not and it follows that there has to be a center cd,s with
dp,s(cd,s) ≤ rd,s < rd for all p ∈ Ps. With s = minp∈P{sp},

dp,sp(cd,s) =
‖p− cd,s‖

sp

≤ ‖p− cd,s‖
s

= dp,s(cd,s)

holds for all p ∈ Ps and it follows that

cd,s ∈ Lsp(p, rd,s)

for all p ∈ Ps. As Lsp(p, rd,s) ⊆ L(p, rd,s) holds for all p ∈ P , we can
conclude that we have found a smallest enclosing ball with radius rd,s < rd

for the point set P ; a contradiction to our assumption that the radius of the
smallest enclosing ball MB(P ) is rd.

As we want to bound
min
p∈P

rd

rd−1,p

(30)

from above, we have to find a point set that maximizes Equation 30. Using
the same argumentation as in the proof of Lemma 7.4, we can conclude that
|P | ≤ d + 1 has to hold.

Say that a point q ∈ P is optimal if MB(P \ {q}) has radius rd−1 so
that rd

rd−1
is minimized. Let us have a look at the point set Q = P \ {q} for

an optimal q and assume that the smallest enclosing ball MB(Q) has center
cd−1,q and radius rd−1,q. Say that the point set Qt has the same points as Q

but the points use the distance function dp(x) = ‖p−x‖
t

.

Lemma 7.11. Assume that the smallest enclosing ball MB(Q) has radius
rd−1,p and center cd−1,p. A point set Qt as defined above has a smallest
enclosing ball MB(Qt) with radius rd−1,p,t and

rd−1,p,t ≤ rd−1,p

holds.

Proof. Observe that for all q ∈ Q, cd−1,p ∈ L(q, rd−1,p). With

L(q, rd−1,p) ⊆ Ltp(q, rd−1,p) ⊆ Lt(q, rd−1,p),

this implies that cd−1,p ∈ Lt(q, rd−1,p). It follows that dq(cd−1,p) ≤ rd−1,p for
all q ∈ Q and therefore rd−1,p,t ≤ rd−1,p.
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With Lemmata 7.10 and 7.11, we can conclude that

min
p∈P

rd

rd−1,p

≤ min
p∈Pt

rd,s

rd−1,p,t

.

In a next step, we show that we can bound

min
p∈Pt

rd,s

rd−1,p,t

from above by moving the point set P into equilateral position; this is possible
as |P | ≤ d + 1. Observe that all points of Qt are contained in Ps but that
the points in the two point sets use different distance functions.

Lemma 7.12. Assume that Ps and Qt as defined above. Let P ′
s be a point

set in equilateral position and let dp(c) = ‖p−c‖
s

for all p ∈ P ′
s. Further,

Q′
t = P ′

s \ {p} for a p ∈ P ′
s and for all q ∈ Q′

t, dq(c) = ‖q−c‖
t

. Say that
MB(P ′

s) has center c′d,s and radius r′d,s and that MB(Q′
t) has center c′d−1,p,t

and radius r′d−1,p,t. Then

min
p∈Pt

rd,s

rd−1,p,t

≤ min
p∈P ′t

r′d,s

r′d−1,p,t

holds.

Proof. From Lemma 7.4, we know that for point sets with L2 distance func-
tion,

min
p∈P ′1

rd

rd−1,p

is maximized by a point set P ′
1 in equilateral position. Unfortunately, the

point sets Ps and Qt have not L2 distance functions but rather scaled L2

distance functions. As all points in Ps use the same scale factor, MB(P1)
and MB(Ps) share the center cd,s and rd,1 = srd,s with rd,1 being the radius
of MB(P1). Analogously MB(Q1) and MB(Qt) share the center cd−1,p,t and
rd−1,p,1 = trd−1,p,t with rd−1,p,1 the radius of MB(Q1).

For P1, we know that a point set P ′
1 in equilateral position fulfills

min
p∈P1

rd,1

rd−1,p,1

≤ min
p∈P ′1

r′d,1

r′d−1,p,1

and this allows us to conclude that

min
p∈Pt

rd,s

rd−1,p,t

= min
p∈P1

trd,1

srd−1,p,1

≤ min
p∈P ′1

tr′d,1

sr′d−1,p,1

= min
p∈P ′t

r′d,s

r′d−1,p,t

holds and our claim follows.
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It remains to analyze

min
p∈P ′t

r′d,s

r′d−1,p,t

in order to bound the maximal decrease in radius from above.

Lemma 7.13. Let P be an SC point set,MB(P ) have radius rd, and MB(P \
{p}) radius rd−1,p. Then

min
p∈P

rd

rd−1,p

≤ 2t√
3s

.

Proof. With Lemma 7.12, we know that

min
p∈P

rd

rd−1,p

≤ min
p∈Pt

rd,s

rd−1,p,t

≤ min
p∈P ′t

r′d,s

r′d−1,p,t

= min
p∈P ′1

tr′d,1

sr′d−1,p,1

.

It remains therefore to find a formula for

min
p∈P ′1

tr′d,1

sr′d−1,p,1

.

From Lemma 7.3, we know that MB(P ′
1) has radius

r′d,1 =

√
d

2(d + 1)
u

with u being the distance between two points in P ′
1. As Q′

1 is a regular
(d− 1)-simplex,

r′d−1,p,1 =

√
d− 1

2d
u.

It follows that

min
p∈P ′t

r′d,s

r′d−1,p,t

=
td

s
√

(d + 1)(d− 1)
= f(d, s, t).

Differentiating f(d, s, t) yields

∂

∂d

td

s
√

(d + 1)(d− 1)
= − t

s(d− 1)
3
2 (d + 1)

3
2

and for s, t > 0 and d ≥ 2, this is always negative. It follows that

min
p∈P

rd

rd−1,p

≤ 2t√
3s

for all d ≥ 2.

We can conclude that the decrease in radius is bounded from above by a
function that is solely dependent on s and t.
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7.4 Potential Core Set Algorithms

The results from the previous section seem to hint that there are core sets
with size dependent on ε, s, and t. It is an obvious guess that one of the core
set algorithms that work for L2 might as well work for SC point sets. We list
two core set algorithms and show for the first one that it does not work for
SC point sets. For the second algorithm, we conjecture that it works for SC
point sets but we are not able to prove this.

Bădoiu and Clarkson present in [5] a simple algorithm that produces an
ε-core set in 1

ε2
steps:

procedure core-set1(P)

begin
Select an arbitrary point p ∈ P .
Set c0 = p.
for i = 0; i < 1

ε2
; i++ do

Select the point pi ∈ P so that dpi
(ci) is maximal.

Set ci+1 = ci + p−ci

i+1
.

end
return c 1

ε2

end
Algorithm 3: First algorithm by Bădoiu and Clarkson.

The counter example showing that Algorithm 3 does not work for SC
point sets is a point set that lies on a line and that has the center far away
from this line; see Figure 22 for an example. No matter how many steps we
make for such a configuration, the center ci always stays on the line defined
by the point set. This means that independent on the size of the core set,
we can find a point set with ci being a bad approximation.

The second algorithm as presented in [5] is defined as follows:

procedure core-set2(P)

// Let MB(Si) have center ci and radius ri.

begin
Select an arbitrary point p ∈ P .
Set S0 = {p}.
for i = 0; i < 2

ε
; i++ do

Select the point pi ∈ P so that dpi
(ci) is maximal.

Set Si+1 = Si ∪ pi.
end
return MB(S 2

ε
)

end
Algorithm 4: Second algorithm by Bădoiu and Clarkson.

We cannot find a counter example showing that Algorithm 4 does not

93



p1 p2 p3 p4

Figure 22: The point set P = {p1, p2, p3, p4} lying on a line is a counter ex-
ample showing that the first algorithm as presented by Bădoiu and Clarkson
is not working for SC point sets.

work for SC point sets. We assume that Algorithm 4 works for SC point
sets if we repeat the last step 2

ε
f(s, t) times with f(s, t) being a function

that is dependent on s and t. Unfortunately, we are not able to prove that
Algorithm 4 indeed produces core sets for SC point sets. Due to the different
geometric setting that we are facing for SC point sets, the proof strategy as
used in [5] cannot be applied for SC point sets; e.g. Lemma 2.1 from [5] does
not hold for SC point sets.
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[13] Kaspar Fischer and Bernd Gärtner. The Smallest Enclosing Ball of
Balls: Combinatorial Structure and Algorithms. International Journal
of Computational Geometry and Applications (IJCGA), 14(4–5):341–
378, 2004.
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